首页> 外文期刊>Expert Systems with Application >A two-stage framework for cross-domain sentiment classification
【24h】

A two-stage framework for cross-domain sentiment classification

机译:跨域情感分类的两阶段框架

获取原文
获取原文并翻译 | 示例

摘要

Supervised sentiment classification systems are typically domain-specific, and the performance decreases sharply when transferred from one domain to another domain. Building these systems involves annotating a large amount of data for every domain, which needs much human labor. So, a reasonable way is to utilize labeled data in one existed (or called source) domain for sentiment classification in target domain. To address this problem, we propose a two-stage framework for cross-domain sentiment classification. At the "building a bridge" stage, we build a bridge between the source domain and the target domain to get some most confidently labeled documents in the target domain; at the "following the structure" stage, we exploit the intrinsic structure, revealed by these most confidently labeled documents, to label the target-domain data. The experimental results indicate that the proposed approach could improve the performance of cross-domain sentiment classification dramatically.
机译:监督的情感分类系统通常是特定于域的,并且当从一个域转移到另一个域时,性能会急剧下降。构建这些系统涉及为每个域注释大量数据,这需要大量的人工。因此,一种合理的方法是利用一个已存在(或称为源)域中的标记数据在目标域中进行情感分类。为了解决这个问题,我们提出了一个两阶段的跨域情感分类框架。在“建立桥梁”阶段,我们在源域和目标域之间建立桥梁,以在目标域中获得一些最可靠标记的文档。在“遵循结构”阶段,我们利用这些最可靠地标记文档显示的固有结构来标记目标域数据。实验结果表明,该方法可以显着提高跨域情感分类的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号