首页> 外文期刊>Expert Systems with Application >Pattern classification and audiovisual content management techniques using hybrid expert systems: A video-assisted bioacoustics application in Abdominal Sounds pattern analysis
【24h】

Pattern classification and audiovisual content management techniques using hybrid expert systems: A video-assisted bioacoustics application in Abdominal Sounds pattern analysis

机译:使用混合专家系统的模式分类和视听内容管理技术:视频辅助生物声学在腹部声音模式分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The current paper focuses on the implementation of hybrid expert systems for audiovisual content description and management, by means of pattern analysis. The proposed methodology combines audio detection-segmentation, surveillance-video motion-detection and hierarchical audio pattern recognition, using neural networks, statistical clustering and syntactic pattern classification. The associated, video-assisted, bioacoustics application focuses on Abdominal Sounds (AS) pattern classification, promising to deliver new potentials in non-invasive Gastro-Intestinal Motility (GIM) monitoring. The current work introduces new techniques for content analysis automation of prolonged multi-channel recordings, facilitating automated GIM auscultation analysis. Thus, it seeks for the establishment of novel diagnostic tools over functional GIM disorders, with the advantage that subjects' behavior and related psycho-physiological issues can be monitored to further analyze their dependencies. Qualitative and quantitative analysis validated the soundness of the adopted pattern classification taxonomy, resulting remarkable pattern recognition accuracy. Based on preliminary results, the proposed methodology can be successfully applied to general audiovisual content classification, description and management tasks (besides bioacoustics).
机译:本论文着重于通过模式分析实现用于视听内容描述和管理的混合专家系统。所提出的方法结合了使用神经网络,统计聚类和句法模式分类的音频检测分段,监视视频运动检测和分层音频模式识别。相关的视频辅助生物声学应用专注于腹部声音(AS)模式分类,有望在非侵入性胃肠动力(GIM)监测中提供新的潜力。当前的工作介绍了新的技术,用于长时间多通道录音的内容分析自动化,从而促进了GIM听诊分析的自动化。因此,其寻求建立针对功能性GIM障碍的新颖诊断工具,其优点在于可以监测受试者的行为和相关的心理生理问题以进一步分析其依赖性。定性和定量分析验证了所采用模式分类法的正确性,从而获得了卓越的模式识别准确性。基于初步结果,所提出的方法可以成功地应用于一般视听内容的分类,描述和管理任务(除了生物声学)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号