首页> 外文期刊>Expert systems with applications >Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine
【24h】

Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine

机译:混沌粒子群算法和支持向量机在传感器故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis of sensor timely and accurately is very important to improve the reliable operation of systems. In the study, fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine is presented in the paper, where chaos particle swarm optimization is chosen to determine the parameters of SVM. Chaos particle swarm optimization is a kind of improved particle swarm optimization, which can not only avoid the search being trapped in local optimum and but also help to search the optimum quickly by using chaos queues. The wireless sensor is employed as research object, and its four fault types including shock, biasing, short circuit and shifting are applied to test the diagnostic ability of CPSO-SVM compared with other diagnostic methods. The diagnostic results show that CPSO-SVM has higher diagnostic accuracy of wireless sensor than PSO-SVM and BP neural network.%Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;
机译:及时准确地对传感器进行故障诊断对于提高系统的可靠运行非常重要。在研究中,提出了利用混沌粒子群算法和支持向量机对传感器进行故障诊断的方法,选择混沌粒子群算法确定支持向量机的参数。混沌粒子群优化是一种改进的粒子群优化算法,它不仅可以避免搜索陷入局部最优中,而且可以利用混沌队列来快速搜索最优。以无线传感器为研究对象,与其他诊断方法相比,采用了冲击,偏压,短路和移位四种故障类型来测试CPSO-SVM的诊断能力。诊断结果表明,CPSO-SVM比PSO-SVM和BP神经网络具有更高的无线传感器诊断精度。%北京邮电大学教育部通用无线通信重点实验室,北京100876;重点实验室北京邮电大学教育部通用无线通信学院,北京100876;北京邮电大学信息与通信工程学院,北京100876;教育部通用无线通信重点实验室北京邮电大学,北京100876;

著录项

  • 来源
    《Expert systems with applications》 |2011年第8期|p.9908-9912|共5页
  • 作者单位

    Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    chaos particle swarm optimization; algorithm; wireless sensor; fault diagnosis; support vector machine; chaos queues;

    机译:混沌粒子群优化;算法;无线传感器故障诊断;支持向量机混乱的队列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号