首页> 外文期刊>Expert Systems with Application >ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction
【24h】

ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction

机译:ARO:一种新的无模型优化算法,适用于无性繁殖带来的实时应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new individual based optimization algorithm, which is inspired from asexual reproduction known as a remarkable biological phenomenon, called as asexual reproduction optimization (ARO). ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem; this leads to the fitter individual. ARO adaptive search ability along with its strength and weakness points are fully described in the paper. Furthermore, the ARO convergence to the global optimum is mathematically analyzed. To approve the effectiveness of the ARO performance, it is tested with several benchmark functions frequently used in the area of optimization. Finally, the ARO performance is statistically compared with that of an improved genetic algorithm (GA). Results of simulation illustrate that ARO remarkably outperforms GA.
机译:本文提出了一种新的基于个体的优化算法,该算法的灵感来自被称为非生物繁殖优化(ARO)的非生物繁殖,这是一种引人注目的生物学现象。 ARO本质上可以被认为是一种基于进化的算法,可以对无性繁殖的萌芽机制进行数学建模。在ARO中,父母通过繁殖操作员产生芽。此后,亲本及其芽根据从优化问题的潜在目标函数获得的性能指标竞争生存。这导致了钳工个人。本文全面介绍了ARO自适应搜索功能及其优缺点。此外,还对ARO收敛到全局最优进行了数学分析。为了批准ARO性能的有效性,已使用优化领域中经常使用的几种基准功能对其进行了测试。最后,将ARO性能与改进的遗传算法(GA)进行统计比较。仿真结果表明,ARO明显优于GA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号