首页> 外文学位 >Real-time dynamic trajectory optimization with application to free-flying space robots.
【24h】

Real-time dynamic trajectory optimization with application to free-flying space robots.

机译:实时动态轨迹优化及其在自由飞行太空机器人中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The capability of robots to complete tasks or entire missions autonomously relies heavily on their ability to plan. Good planners must not only be able to produce efficient plans but must also be able to modify those plans quickly in response to unpredicted events. Unfortunately these two goals are often conflicting ones, with only slow, complex planners able to produce efficient plans, and only quick, simple planners able to react to unpredicted events.;The research presented in this dissertation focuses on the development of a real-time dynamic trajectory optimization system that provides both highly efficient motion planning capabilities and the ability to react to uncertainty in the environment. This system achieves these capabilities by utilizing simultaneous planning and execution to improve the robot's trajectory while the robot is in motion along the trajectory. Although other robotic systems have used simultaneous planning and execution, this dissertation applies the concept to dynamic trajectory optimization, a sophisticated technique for computing highly efficient trajectories that has previously been used only in off-line planning applications and in simulation.;The resulting system uses a non-linear optimization algorithm to improve an initial trajectory, subject to the dynamics of the system and constraints on the robot's motion, in order to minimize a weighted sum of the fuel and time required to complete the trajectory. Using this system, several motion planning tasks are demonstrated experimentally on a thruster propelled free-flying robot. The most complex of these tasks requires the robot to travel around a pair of stationary obstacles and intercept a moving, maneuvering target vehicle in a highly efficient manner. The experimental results show that for the sample moving-target-intercept task, the real-time planner provides 2.42 times better performance than a reactive planner and an on-line planner is unable to complete the task at all. This experimental demonstration highlights the advantages of real-time dynamic trajectory optimization in providing a high performance motion planning capability, even when operating in a dynamic, uncertain environment.
机译:机器人自主完成任务或整个任务的能力在很大程度上取决于他们的计划能力。好的计划者不仅必须能够制定有效的计划,而且还必须能够对意外事件做出快速修改。不幸的是,这两个目标常常是相互冲突的,只有缓慢,复杂的计划者才能制定出有效的计划,而只有快速,简单的计划者才能够对意外事件做出反应。动态轨迹优化系统,可提供高效的运动计划功能和对环境不确定性做出反应的能力。该系统通过在机器人沿着轨迹运动的同时利用同时进行的计划和执行来改善机器人的轨迹来实现这些功能。尽管其他机器人系统已经使用了同步计划和执行功能,但本文将这一概念应用于动态轨迹优化,这是一种用于计算高效轨迹的复杂技术,以前仅在离线计划应用程序和仿真中使用过;一种非线性优化算法,可改善初始轨迹,但要遵循系统的动力学和机器人运动的约束,以最大程度地减少完成轨迹所需的燃料和时间的加权总和。使用该系统,在推进式自由飞行机器人上通过实验演示了几种运动计划任务。这些任务中最复杂的是,机器人需要绕着一对固定的障碍物行驶,并以高效的方式拦截移动的机动目标车辆。实验结果表明,对于示例的移动目标拦截任务,实时计划程序的性能比被动计划程序的性能高2.42倍,并且在线计划程序根本无法完成任务。该实验演示强调了实时动态轨迹优化的优点,即使在动态,不确定的环境中运行时,也可提供高性能的运动计划功能。

著录项

  • 作者

    Miles, David Wilson.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Aerospace.;Computer Science.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号