首页> 外文期刊>Expert Systems with Application >Robust kernel FCM in segmentation of breast medical images
【24h】

Robust kernel FCM in segmentation of breast medical images

机译:稳健的核FCM在乳腺医学图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an automatic effective fuzzy c-means segmentation method for segmenting breast cancer MRI based on standard fuzzy c-means. To introduce a new effective segmentation method, this paper introduced a novel objective function by replacing original Euclidean distance on feature space using new hyper tangent function. This paper obtains the new hyper tangent function from exited hyper tangent function to perform effectively with large number of data from more noised medical images and to have strong clusters. It derives an effective method to construct the membership matrix for objects, and it derives a robust method for updating centers from proposed novel objective function. Experiments will be done with an artificially generated data set to show how effectively the new fuzzy c-means obtain clusters, and then this work implements the proposed methods to segment the breast medical images into different regions, each corresponding to a different tissue, based on the signal enhancement-time information. This paper compares the results with results of standard fuzzy c-means algorithm. The correct classification rate of proposed fuzzy c-means segmentation method is obtained using silhouette method.
机译:本文提出了一种基于标准模糊c均值的自动有效的模糊c均值分割方法。为了介绍一种新的有效分割方法,本文介绍了一种新的目标函数,即使用新的超正切函数替换特征空间上的原始欧几里得距离。本文从已有的超正切函数中获得了新的超正切函数,以有效处理噪声较大的医学图像中的大量数据并具有强大的聚类。它推导了一种构造对象隶属度矩阵的有效方法,并且从提出的新颖目标函数推导了一种更新中心的鲁棒方法。将使用人工生成的数据集进行实验,以显示新的模糊c均值如何有效地获取聚类,然后,这项工作将根据以下方法实施建议的方法,以将乳腺医学图像分割为不同的区域,每个区域对应于不同的组织信号增强时间信息。本文将结果与标准模糊c均值算法的结果进行了比较。利用轮廓法获得了模糊c均值分割方法的正确分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号