首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
【24h】

Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure

机译:基于新的核诱导距离度量的具有空间约束的FCM鲁棒图像分割

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy c-means clustering (FCM) with spatial constraints (FCM_S) is an effective algorithm suitable for image segmentation. Its effectiveness contributes not only to the introduction of fuzziness for belongingness of each pixel but also to exploitation of spatial contextual information. Although the contextual information can raise its insensitivity to noise to some extent, FCM_S still lacks enough robustness to noise and outliers and is not suitable for revealing non-Euclidean structure of the input data due to the use of Euclidean distance (L2 norm). In this paper, to overcome the above problems, we first propose two variants, FCM_S1 and FCM_S2, of FCM_S to aim at simplifying its computation and then extend them, including FCM_S, to corresponding robust kernelized versions KFCM_S, KFCM_S1 and KFCM_S2 by the kernel methods. Our main motives of using the kernel methods consist in: inducing a class of robust non-Euclidean distance measures for the original data space to derive new objective functions and thus clustering the non-Euclidean structures in data; enhancing robustness of the original clustering algorithms to noise and outliers, and still retaining computational simplicity. The experiments on the artificial and real-world datasets show that our proposed algorithms, especially with spatial constraints, are more effective.
机译:具有空间约束(FCM_S)的模糊c均值聚类(FCM)是适用于图像分割的有效算法。它的有效性不仅有助于为每个像素的归属引入模糊性,而且还有助于开发空间上下文信息。尽管上下文信息可以在某种程度上提高其对噪声的不敏感性,但FCM_S仍然缺乏足够的鲁棒性以防止噪声和异常值,并且由于使用了欧几里德距离(L2范数),因此不适合显示输入数据的非欧几里德结构。在本文中,为了克服上述问题,我们首先提出FCM_S的两个变体FCM_S1和FCM_S2,以简化其计算,然后通过内核方法将它们(包括FCM_S)扩展到相应的健壮内核版本KFCM_S,KFCM_S1和KFCM_S2 。我们使用核方法的主要动机包括:为原始数据空间引入一类健壮的非欧几里得距离度量,以得出新的目标函数,从而将非欧几里得结构聚类到数据中;增强了原始聚类算法对噪声和离群值的鲁棒性,同时仍保持了计算的简便性。在人工和真实数据集上的实验表明,我们提出的算法(特别是在空间受限的情况下)更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号