首页> 外文期刊>Expert Systems with Application >An associative memory-based learning model with an efficient hardware implementation in FPGA
【24h】

An associative memory-based learning model with an efficient hardware implementation in FPGA

机译:基于存储器的关联学习模型,在FPGA中具有高效的硬件实现

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a learning model based on a short- and long-term memory and a ranking mechanism which manages the transition of reference vectors between the two memories. Furthermore, an optimization algorithm is used to adjust the reference vectors components as well as their distribution, continuously. Comparing to other learning models like neural networks, the main advantage of the proposed model is that a pre-training phase is unnecessary and it has a hardware-friendly structure which makes it implementable by an efficient LSI architecture without requiring a large amount of resources. A prototype system is implemented on an FPCA platform and tested with real data of handwritten and printed English characters delivering satisfactory classification results.
机译:在本文中,我们提出了一种基于短期和长期记忆的学习模型,以及一种用于管理两个记忆之间的参考向量过渡的排序机制。此外,使用优化算法来连续地调整参考矢量分量及其分布。与其他学习模型(如神经网络)相比,该模型的主要优点是不需要预训练阶段,并且具有硬件友好的结构,使其可以通过高效的LSI架构实现,而无需大量的资源。原型系统在FPCA平台上实施,并通过手写和印刷英文字符的真实数据进行了测试,可提供令人满意的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号