首页> 外文期刊>Expert Systems with Application >An application of neural networks for harmonic coefficients and relative phase shifts detection
【24h】

An application of neural networks for harmonic coefficients and relative phase shifts detection

机译:神经网络在谐波系数和相对相移检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The varying the phase shifts will completely change the shape of the distorted wave, and may thus greatly affect the ability of the neural network to recognize harmonics. In this study, feed forward neural networks were used for the detection of the harmonic coefficients and relative phase shifts. The distorted wave including uniform distributed 5th, 7th, 11th, 13th, 17th, 19th, 23rd, 25th harmonics with up to 20° relative phase shifts were simulated and used. Two neural networks were used for this purpose. One of the neural networks was used for the detection of the 5th, 7th, 11th, 13th harmonic coefficients and the other was used for the detection of the relative phase shifts of these harmonics. Scaled conjugate gradient algorithm was used as training algorithm for the weights update of the neural networks. The results show that these neural networks are applicable to detect each harmonic coefficient and relative phase shift effectively.
机译:改变相移将完全改变畸变波的形状,从而可能极大地影响神经网络识别谐波的能力。在这项研究中,前馈神经网络用于谐波系数和相对相移的检测。模拟并使用了畸变波,该畸变波包括均匀分布的第5、7、11、13、17、19、23、25次谐波,相对相移最高达20°。为此使用了两个神经网络。其中一个神经网络用于检测5、7、11、13谐波系数,另一个用于检测这些谐波的相对相移。比例共轭梯度算法被用作神经网络权重更新的训练算法。结果表明,这些神经网络可有效地检测每个谐波系数和相对相移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号