首页> 外文期刊>Journal of Petroleum Science & Engineering >Application of neural networks in multiphase flow through porous media: Predicting capillary pressure and relative permeability curves
【24h】

Application of neural networks in multiphase flow through porous media: Predicting capillary pressure and relative permeability curves

机译:通过多孔介质在多相流中的应用:预测毛细管压力和相对渗透曲线

获取原文
获取原文并翻译 | 示例
           

摘要

Artificial Neural Networks (ANN) are trained to simulate two-phase capillary pressure and relative permeability data in bundles of capillary tubes with non-uniform arbitrary wettability conditions and cross-sectional shapes of different irregular convex polygons. All polygons with variable number of corners are randomly generated for a given range of inscribed radii, shape, and elongation factors. To generate the data for the training of ANNs, the minimization of Helmholtz free energy and Mayer-Stowe-Princen (MS-P) method are combined to find thermodynamically consistent threshold capillary pressures for two-phase flow. These capillary pressures are then used to determine the sequence of displacements in different capillary tubes. We calculate saturations and phase conductance at each quasi steady-state condition where no more displacements can be done for a given capillary pressure. The generated two-phase capillary pressure and relative permeability curves are then used for the training of ANNs. We test different designs of ANNs to find the optimal workflow for the training and predicting of petrophysical properties related to multiphase flow. In this work, we present the results of two different neural network structures. In the first structure, we use ANN to predict threshold capillary pressures of different capillary tubes during a drainage process (i.e., oil-to-water displacements). In the second structure, we predict capillary pressure and relative permeability curves for an arbitrary bundle of capillary tubes. The first structure of ANNs simulates a fixed property for a given capillary tube, whereas the second structure simulates time-series data format (i.e., for a given bundle of capillary tubes calculated properties vary with saturation). To do so, we have generated multi-phase flow properties for two large datasets consisting of 40,000 and 60,000 capillary tubes each. High-quality training datasets are critical in the training of high-fidelity ANN models. These models can then learn the impact of a wide variety of pore geometries (i.e., shape factors and elongations). Additionally, feature selection and preprocessing of the input data could significantly impact ANN's predictions. The multi-layer perceptron (MLP) neural network with three hidden layers with four outputs is adequate for predicting capillary pressure and relative permeability curves during drainage. This model is approximately an order of magnitude faster than conventional direct calculations using a desktop computer with four cores CPU. Such improvement in the speed of calculations becomes significant when dealing with larger models, more dimensions, and/or introducing pore connectivity in 3D.
机译:培训人工神经网络(ANN),以模拟具有非均匀任意润湿条件的毛细管束中的两相毛细管压力和相对渗透性数据,以及不同的不规则凸起多边形的横截面形状。对于给定范围的刻度的半径,形状和伸长因子,随机地产生具有可变数量的各个多边形。为了产生ANN的训练数据,将Helmholtz自由能和Mayer-Stowe-ProteN(MS-P)方法的最小化组合以找到用于两相流的热力学一致的阈值毛细管压力。然后使用这些毛细管压力来确定不同毛细管管中的位移序列。我们在每个准稳态条件下计算饱和和相位电导,因为可以为给定的毛细管压力进行更多位移。然后使用产生的两相毛细管压力和相对渗透性曲线用于ANN的训练。我们测试ANNS的不同设计,以找到培训和预测与多相流有关的岩石物理性质的最佳工作流程。在这项工作中,我们介绍了两个不同的神经网络结构的结果。在第一结构中,我们使用ANN预测排水过程(即油 - 水位移)期间不同毛细管的阈值毛细管压力。在第二结构中,我们预测任意毛细管的毛细管压力和相对渗透曲线。 ANN的第一结构模拟给定毛细管的固定性质,而第二结构模拟时间序列数据格式(即,对于给定的毛细管管的给定的毛细管的特性随饱和度而变化)。为此,我们为两个大型数据集产生了多相流性,包括40,000和60,000个毛细管管。高质量培训数据集在高保真ANN型号的培训方面至关重要。然后,这些模型可以学习各种孔构造的影响(即形状因子和伸长)。此外,输入数据的特征选择和预处理可以显着影响ANN的预测。具有具有四个输出的三层的多层的Perceptron(MLP)神经网络足以预测引流期间的毛细管压力和相对渗透曲线。该模型比使用具有四个核心CPU的桌面计算机的常规直接计算速度快大约数量级。在处理更大的模型,更多尺寸和/或在3D中引入孔连接时,计算速度的这种改进变得显着。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号