首页> 外文期刊>Expert systems with applications >Text-independent speaker verification using ant colony optimization-based selected features
【24h】

Text-independent speaker verification using ant colony optimization-based selected features

机译:使用基于蚁群优化的选定功能进行与文本无关的说话人验证

获取原文
获取原文并翻译 | 示例

摘要

With the growing trend toward remote security verification procedures for telephone banking, biometric security measures and similar applications, automatic speaker verification (ASV) has received a lot of attention in recent years. The complexity of ASV system and its verification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the number of speakers. In this paper, we concentrate on optimizing dimensionality of feature space by selecting relevant features. At present there are several methods for feature selection in ASV systems. To improve performance of ASV system we present another method that is based on ant colony optimization (ACO) algorithm. After feature reduction phase, feature vectors are applied to a Gaussian mixture model universal background model (GMM-UBM) which is a text-independent speaker verification model. The performance of proposed algorithm is compared to the performance of genetic algorithm on the task of feature selection in TIMIT corpora. The results of experiments indicate that with the optimized feature set, the performance of the ASV system is improved. Moreover, the speed of verification is significantly increased since by use of ACO, number of features is reduced over 80% which consequently decrease the complexity of our ASV system.
机译:随着电话银行,生物特征安全措施和类似应用程序的远程安全验证程序的增长趋势,自动扬声器验证(ASV)近年来受到了广泛的关注。 ASV系统的复杂性及其验证时间取决于特征向量的数量,其维数,说话者模型的复杂程度和说话者的数量。在本文中,我们专注于通过选择相关特征来优化特征空间的维数。当前,在ASV系统中有几种用于特征选择的方法。为了提高ASV系统的性能,我们提出了另一种基于蚁群优化(ACO)算法的方法。在特征缩减阶段之后,将特征向量应用于高斯混合模型通用背景模型(GMM-UBM),该模型是独立于文本的说话者验证模型。在TIMIT语料库的特征选择任务上,将提出的算法的性能与遗传算法的性能进行了比较。实验结果表明,通过优化的功能集,ASV系统的性能得到了改善。此外,由于使用了ACO,功能的数量减少了80%以上,从而大大提高了验证速度,从而降低了ASV系统的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号