首页> 外文期刊>Expert systems with applications >Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts
【24h】

Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts

机译:基于小波支持向量机和改进遗传算法的高斯噪声惩罚混合模型

获取原文
获取原文并翻译 | 示例

摘要

In view of the dissatisfactory capability of the ε;-insensitive loss function in field of white (Gaussian) noise of multi-dimensional load series, a new wavelet ν-support vector machine with Gaussian loss function which is called Wg-SVM is put forward to penalize the Gaussian noises. To seek the optimal parameters of Wg-SVM, modified genetic algorithm (GA) is proposed to optimize parameters of Wg-SVM. The results of application in load forecasts show that the forecasting approach based on the Wg-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves this method is better than other SVM methods.
机译:针对多维负荷序列白噪声(高斯)领域中ε;不敏感损失函数的令人满意的性能,提出了一种新的具有高斯损失函数的小波ν-支持向量机,称为Wg-SVM。惩罚高斯噪声。为了寻求最优的Wg-SVM参数,提出了改进的遗传算法(GA)优化Wg-SVM的参数。在负荷预测中的应用结果表明,基于Wg-SVM模型的预测方法是有效可行的,并与本文提出的方法进行了比较,证明了该方法优于其他的SVM方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号