首页> 外文期刊>Expert Systems with Application >Fault detection, isolation and identification for hybrid systems with unknown mode changes and fault patterns
【24h】

Fault detection, isolation and identification for hybrid systems with unknown mode changes and fault patterns

机译:模式变化和故障模式未知的混合系统的故障检测,隔离和识别

获取原文
获取原文并翻译 | 示例

摘要

This article presents a solution to the problem of multiple fault detection, isolation and identification for hybrid systems without information on mode change and fault patterns. Multiple faults of different patterns are considered in a complex hybrid system and these faults can happen either in a detectable mode or in a non-detectable mode. A method for multiple fault isolation is introduced for situation of lacking information on fault pattern and mode change. The nature of faults in a monitored system can be classified as abrupt faults and incipient faults. Under abrupt fault assumption, i.e. constant values for fault parameters, fault identification is inappropriate to handle cases related to incipient fault. Without information on fault nature, it is difficult to achieve fault estimation. Situation is further complicated when mode change is unknown after fault occurrence. In this work, fault pattern is represented by a binary vector to reduce computational complexity of fault identification. Mode change is parameterized as a discontinuous function. Based on these new representations, a multiple hybrid differential evolution algorithm is developed to identify fault pattern vector, abrupt fault parameter/incipient fault dynamic coefficient, and mode change indexes. Simulation and experiment results are reported to validate the proposed method.
机译:本文提出了一种解决方案,该方案针对混合系统的多个故障检测,隔离和识别问题,而无需提供有关模式更改和故障模式的信息。在复杂的混合系统中考虑了多种不同模式的故障,这些故障可能以可检测模式发生,也可能以不可检测模式发生。针对故障模式和模式变化缺乏信息的情况,提出了一种多故障隔离的方法。被监视系统中的故障的性质可以分为突发性故障和初期性故障。在突发故障假设(即故障参数的常数值)下,故障识别不适用于处理与初期故障有关的情况。没有故障性质的信息,很难实现故障估计。当故障发生后模式改变未知时,情况更加复杂。在这项工作中,故障模式用二进制矢量表示,以减少故障识别的计算复杂度。模式更改被参数化为不连续函数。基于这些新的表示,开发了一种多重混合差分进化算法,以识别故障模式向量,突然的故障参数/初始故障动态系数以及模式变化指数。通过仿真和实验结果验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号