首页> 外文学位 >Fault detection, isolation, and identification for nonlinear systems using a hybrid approach.
【24h】

Fault detection, isolation, and identification for nonlinear systems using a hybrid approach.

机译:使用混合方法对非线性系统进行故障检测,隔离和识别。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems; taking advantage of both system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution are a bank of adaptive neural parameter estimators (NPE) and a set of single-parameterized fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. In view of the availability of full-state measurements, two NPE structures, namely series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Simple neural network architecture and update laws make both schemes suitable for real-time implementations. A fault tolerant observer (FTO) is then designed to extend the FDII schemes to systems with partial-state measurement. The proposed FTO is a neural state estimator that can estimate unmeasured states even in presence of faults. The estimated and the measured states then comprise the inputs to the FDII schemes. Simulation results for FDII of reaction wheels of a 3-axis stabilized satellite in presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solution under both full and partial-state measurements.
机译:本文提出了一种用于非线性系统故障诊断的新型集成混合方法。充分利用系统的数学模型和计算智能技术的自适应非线性逼近能力。与大多数FD技术不同,所提出的解决方案在统一的诊断模块内同时完成故障检测,隔离和识别(FDII)。该解决方案的核心是一组自适应神经参数估计器(NPE)和一组单参数故障模型。 NPE不断估计未知故障参数(FP),这些参数是系统中故障的指示器。考虑到全状态测量的可用性,开发了两个NPE结构,即串联-并联和并联,具有其独有的理想属性集。并行方案对测量噪声具有极强的鲁棒性,并具有更简单但更可靠的故障隔离逻辑。相反,串并联方案显示出短的FD延迟,并且由于控制命令的变化而对闭环系统瞬变具有鲁棒性。简单的神经网络架构和更新规律使这两种方案都适合于实时实现。然后设计一个容错观察器(FTO),以将FDII方案扩展到具有部分状态测量的系统。所提出的FTO是一种神经状态估计器,即使在存在故障的情况下也可以估计未测状态。然后,估计状态和测量状态包括FDII方案的输入。在存在干扰和噪声的情况下,三轴稳定卫星的反作用轮FDII的仿真结果证明了所提出的FDII解决方案在全部和部分状态下的有效性。

著录项

  • 作者

    Sobahni-Tehrani, Ehsan.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.A.Sc.
  • 年度 2008
  • 页码 366 p.
  • 总页数 366
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号