首页> 外文期刊>Expert systems with applications >Parkinson's disease classification using gait characteristics and wavelet-based feature extraction
【24h】

Parkinson's disease classification using gait characteristics and wavelet-based feature extraction

机译:使用步态特征和基于小波的特征提取进行帕金森氏病分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method to classify idiopathic PD patients and healthy controls using both the gait characteristics of idiopathic PD patients and wavelet-based feature extraction. Using the characteristics of idiopathic PD patients who shuffle their feet while they are walking, we implemented the following three preprocessing methods: (i) we used the difference between two signals that each represented the sum of eight sensor outputs from one foot; (ii) we used the difference between the maximum and minimum records among the vertical ground reaction force outputs from the eight sensors under the left foot; and (iii) we used method (i) again, but on the signals each obtained from one foot by method (ii). After thus conducting the three preprocessing tasks, we created approximation coefficients and detail coefficients using wavelet transforms (WTs). Then, we extracted 40 features from these coefficients by using statistical approaches, including frequency distributions and their variabilities. Using the 40 features as inputs to the neural network with weighted fuzzy membership functions (NEWFM), we compared the performances of the three abovementioned methods. When idiopathic PD patients and healthy controls were classified using the NEWFM, the accuracy, specificity, and sensitivity of the results were, respectively, as follows: 74.32%, 81.63%, and 73.77% by method (i); 75.18%, 74.67%, and 75.24% by method (ii); or 77.33%, 65.48%, and 81.10% by method (iii).
机译:本文提出了一种利用特发性PD患者的步态特征和基于小波的特征提取对特发性PD患者和健康对照进行分类的方法。利用特发性PD患者走路时会洗脚的特征,我们实施了以下三种预处理方法:(i)我们使用两个信号之间的差值,每个信号代表一只脚的八个传感器输出之和; (ii)我们使用了左脚下八个传感器在垂直地面反作用力输出中最大和最小记录之间的差异; (iii)我们再次使用方法(i),但在分别通过方法(ii)从一只脚获得的信号上。在完成了这三个预处理任务之后,我们使用小波变换(WTs)创建了近似系数和细节系数。然后,我们使用统计方法从这些系数中提取了40个特征,包括频率分布及其变异性。使用40个特征作为具有加权模糊隶属度函数(NEWFM)的神经网络的输入,我们比较了上述三种方法的性能。当使用NEWFM对特发性PD患者和健康对照进行分类时,方法(i)的结果的准确性,特异性和敏感性分别为:74.32%,81.63%和73.77%;通过方法(ii)的75.18%,74.67%和75.24%;或方法(iii)的77.33%,65.48%和81.10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号