首页> 外文期刊>Expert systems with applications >Towards designing modular recurrent neural networks in learning protein secondary structures
【24h】

Towards designing modular recurrent neural networks in learning protein secondary structures

机译:在学习蛋白质二级结构中设计模块化递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

Precise prediction of protein secondary structures from the associated amino acids sequence is of great importance in bioinformatics and yet a challenging task for machine learning algorithms. As a major step toward predicting the ultimate three dimensional structures, the secondary structure assignment specifies the protein function. Considering a multilayer perceptron neural network, pruned for optimum size of hidden layers, as the reference network, advanced kinds of recurrent neural network (RNN) are devised in this article to enhance the secondary structure prediction. To better model the strong correlations between secondary structure elements, types of modular reciprocal recurrent neural networks (MRRNN) are examined. Additionally, to take into account the long-range interactions between amino acids in formation of the secondary structure, bidirectional RNN are investigated. A multilayer bidirectional recurrent neural network (MBR-NN) is finally applied to capture the predominant long-term dependencies. Eventually, a modular prediction system based on the interactive combination of the MRR-NN and MBR-NN boosts the percentage accuracy (Q_3) up to 76.91% and augments the segment overlap (SOV) up to 68.13% when tested on the PSIPRED dataset. The coupling effects of the secondary structure types as well as the sequential information of amino acids along the protein chain can be well cast by the integration of the MRR-NN and the MBR-NN.
机译:从相关的氨基酸序列精确预测蛋白质二级结构在生物信息学中非常重要,但对于机器学习算法而言却是一项艰巨的任务。作为预测最终三维结构的主要步骤,二级结构指定了蛋白质的功能。考虑到经过修剪以优化隐藏层大小的多层感知器神经网络,作为参考网络,本文设计了高级的递归神经网络(RNN)以增强对二级结构的预测。为了更好地建模二级结构元素之间的强相关性,研究了模块化互易递归神经网络(MRRNN)的类型。另外,考虑到二级结构形成中氨基酸之间的长距离相互作用,研究了双向RNN。最后应用多层双向递归神经网络(MBR-NN)捕获主要的长期依存关系。最终,在PSIPRED数据集上进行测试时,基于MRR-NN和MBR-NN交互组合的模块化预测系统可将百分比准确性(Q_3)提升至76.91%,并将段重叠(SOV)提升至68.13%。通过整合MRR-NN和MBR-NN,可以很好地发挥二级结构类型的耦合作用以及沿着蛋白质链的氨基酸顺序信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号