首页> 外文期刊>Expert Systems with Application >Context-prediction performance by a dynamic Bayesian network: Emphasis on location prediction in ubiquitous decision support environment
【24h】

Context-prediction performance by a dynamic Bayesian network: Emphasis on location prediction in ubiquitous decision support environment

机译:动态贝叶斯网络的上下文预测性能:无处不在的决策支持环境中的位置预测

获取原文
获取原文并翻译 | 示例

摘要

Ubiquitous decision support systems require more intelligent mechanism in which more timely and accurate decision support is available. However, conventional context-aware systems, which have been popular in the ubiquitous decision support systems field, cannot provide such agile and proactive decision support. To fill this research void, this paper proposes a new concept of context prediction mechanism by which the ubiquitous decision support devices are able to predict users' future contexts in advance, and provide more timely and proactive decision support that users would be satisfied much more. Especially, location prediction is useful because ubiquitous decision support systems could dynamically adapt their decision support contents for a user based on a user's future location. In this sense, as an alternative for the inference engine mechanism to be used in the ubiquitous decision support systems capable of context-prediction, we propose an inductive approach to recognizing a user's location by learning a dynamic Bayesian network model. The dynamic Bayesian network model has been evaluated with a set of contextual data from undergraduate students. The evaluation result suggests that a dynamic Bayesian network model offers significant predictive power in the location prediction. Besides, we found that the dynamic Bayesian network model has a great potential for the future types of ubiquitous decision support systems.
机译:无处不在的决策支持系统需要更智能的机制,在这种机制中,可以提供更及时和准确的决策支持。然而,在无处不在的决策支持系统领域中流行的常规上下文感知系统不能提供这种敏捷和主动的决策支持。为了填补这一研究空白,本文提出了一种上下文预测机制的新概念,通过该机制,无处不在的决策支持设备可以提前预测用户的未来上下文,并提供更及时,更主动的决策支持,以使用户更加满意。特别地,位置预测是有用的,因为普遍存在的决策支持系统可以基于用户的未来位置为用户动态地适应其决策支持内容。从这个意义上说,作为在能够进行上下文预测的无处不在的决策支持系统中使用推理引擎机制的替代方法,我们提出了一种归纳方法,通过学习动态贝叶斯网络模型来识别用户的位置。动态贝叶斯网络模型已根据来自大学生的一组上下文数据进行了评估。评估结果表明,动态贝叶斯网络模型在位置预测中提供了显着的预测能力。此外,我们发现动态贝叶斯网络模型对于未来类型的无处不在的决策支持系统具有巨大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号