首页> 外文期刊>Expert Systems with Application >A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine
【24h】

A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine

机译:基于支持向量机的混合集成企业信用风险评估方法

获取原文
获取原文并翻译 | 示例

摘要

Enterprise credit risk assessment has long been regarded as a critical topic and many statistical and intelligent methods have been explored for this issue. However there are no consistent conclusions on which methods are better. Recent researches suggest combining multiple classifiers, i.e., ensemble learning, may have a better performance. In this paper, we propose a new hybrid ensemble approach, called RSB-SVM, which is based on two popular ensemble strategies, i.e., bagging and random subspace and uses Support Vector Machine (SVM) as base learner. As there are two different factors, i.e., bootstrap selection of instances and random selection of features, encouraging diversity in RSB-SVM, it would be advantageous to get better performance. The enterprise credit risk dataset, which includes 239 companies' financial records and is collected by the Industrial and Commercial Bank of China, is selected to demonstrate the effectiveness and feasibility of proposed method. Experimental results reveal that RSB-SVM can be used as an alternative method for enterprise credit risk assessment.
机译:长期以来,企业信用风险评估一直是一个关键主题,为此问题探索了许多统计和智能方法。但是,关于哪种方法更好,没有一致的结论。最近的研究表明结合多个分类器,即整体学习,可能具有更好的性能。在本文中,我们提出了一种称为RSB-SVM的新混合集成方法,该方法基于两种流行的集成策略(即装袋和随机子空间),并使用支持向量机(SVM)作为基础学习器。由于存在两个不同的因素,即实例的自举选择和特征的随机选择,鼓励了RSB-SVM中的多样性,因此获得更好的性能将是有利的。选择了由中国工商银行收集的企业信用风险数据集,包括239家公司的财务记录,以证明所提方法的有效性和可行性。实验结果表明,RSB-SVM可以用作企业信用风险评估的替代方法。

著录项

  • 来源
    《Expert Systems with Application》 |2012年第5期|p.5325-5331|共7页
  • 作者

    Gang Wang; Jian Ma;

  • 作者单位

    School of Management, Hefei University of Technology, Hefei, Anhui 230009, PR China,Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei, Anhui, PR China,Department of Information Systems, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

    Department of Information Systems, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    enterprise credit risk assessment; ensemble learning; bagging; random subspace; SVM;

    机译:企业信用风险评估;整体学习;套袋随机子空间支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号