首页> 外文期刊>Expert systems with applications >Support vector machine based multiagent ensemble learning for credit risk evaluation
【24h】

Support vector machine based multiagent ensemble learning for credit risk evaluation

机译:基于支持向量机的多主体集成学习用于信用风险评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a four-stage support vector machine (SVM) based multiagent ensemble learning approach is proposed for credit risk evaluation. In the first stage, the initial dataset is divided into two independent subsets: training subset (in-sample data) and testing subset (out-of-sample data) for training and verification purposes. In the second stage, different SVM learning paradigms with much dissimilarity are constructed as intelligent agents for credit risk evaluation. In the third stage, multiple individual SVM agents are trained using training subsets and the corresponding evaluation results are also obtained. In the final stage, all individual results produced by multiple SVM agents in the previous stage are aggregated into an ensemble result. In particular, the impact of the diversity of individual intelligent agents on the generalization performance of the SVM-based multiagent ensemble learning system is examined and analyzed. For illustration, one corporate credit card application approval dataset is used to verify the effectiveness of the SVM-based multiagent ensemble learning system.
机译:本文提出了一种基于四阶段支持向量机的多主体集成学习方法进行信用风险评估。在第一阶段,出于训练和验证目的,初始数据集分为两个独立的子集:训练子集(样本内数据)和测试子集(样本外数据)。在第二阶段,将具有极大不同的不同SVM学习范例构建为信用风险评估的智能主体。在第三阶段,使用训练子集对多个单独的SVM代理进行训练,并获得相应的评估结果。在最后阶段,由多个SVM代理在先前阶段中产生的所有单个结果都将汇总为一个整体结果。特别是,研究和分析了单个智能代理的多样性对基于SVM的多代理集成学习系统的泛化性能的影响。为了说明,使用一个公司信用卡申请批准数据集来验证基于SVM的多代理集成学习系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号