首页> 外文期刊>Expert Systems with Application >A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes
【24h】

A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes

机译:一种考虑缺失值的数据挖掘方法,用于优化半导体制造工艺

获取原文
获取原文并翻译 | 示例

摘要

Due to the rapid development of information technologies, abundant data have become readily available. Data mining techniques have been used for process optimization in many manufacturing processes in automotive, LCD, semiconductor, and steel production, among others. However, a large amount of missing values occurs in the data set due to several causes (eg., data discarded by gross measurement errors, measurement machine breakdown, routine maintenance, sampling inspection, and sensor failure), which frequently complicate the application of data mining to the data set. This study proposes a new procedure for optimizing processes called missing values-Patient Rule Induction Method (m-PRIM), which handles the missing-values problem systematically and yields considerable process improvement, even if a significant portion of the data set has missing values. A case study in a semiconductor manufacturing process is conducted to illustrate the proposed procedure.
机译:由于信息技术的飞速发展,丰富的数据已变得容易获得。数据挖掘技术已用于汽车,LCD,半导体和钢铁生产等许多制造过程中的过程优化。但是,由于多种原因(例如,由于总体测量错误,测量机器故障,日常维护,采样检查和传感器故障而丢弃的数据),数据集中会出现大量缺失值,这通常会使数据的应用复杂化挖掘数据集。这项研究提出了一种优化过程的新方法,称为缺失值-患者规则归纳法(m-PRIM),即使数据集的很大一部分具有缺失值,该方法也可以系统地处理缺失值问题并产生可观的过程改进。进行了半导体制造过程中的案例研究,以说明所建议的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号