首页> 外文期刊>Expert Systems with Application >A novel hybrid classification model of artificial neural networks and multiple linear regression models
【24h】

A novel hybrid classification model of artificial neural networks and multiple linear regression models

机译:新型的人工神经网络混合分类模型和多元线性回归模型

获取原文
获取原文并翻译 | 示例

摘要

The classification problem of assigning several observations into different disjoint groups plays an important role in business decision making and many other areas. Developing more accurate and widely applicable classification models has significant implications in these areas. It is the reason that despite of the numerous classification models available, the research for improving the effectiveness of these models has never stopped. Combining several models or using hybrid models has become a common practice in order to overcome the deficiencies of single models and can be an effective way of improving upon their predictive performance, especially when the models in combination are quite different. In this paper, a novel hybridization of artificial neural networks (ANNs) is proposed using multiple linear regression models in order to yield more general and more accurate model than traditional artificial neural networks for solving classification problems. Empirical results indicate that the proposed hybrid model exhibits effectively improved classification accuracy in comparison with traditional artificial neural networks and also some other classification models such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), K-nearest neighbor (KNN), and support vector machines (SVMs) using benchmark and real-world application data sets. These data sets vary in the number of classes (two versus multiple) and the source of the data (synthetic versus reai-world). Therefore, it can be applied as an appropriate alternate approach for solving classification problems, specifically when higher forecasting accuracy is needed.
机译:将多个观测值分配给不同的不相交的组的分类问题在业务决策和许多其他领域中起着重要作用。在这些领域中,开发更准确和广泛适用的分类模型具有重要意义。这是尽管有许多可用的分类模型的原因,但改善这些模型的有效性的研究从未停止过。为了克服单个模型的不足,组合多个模型或使用混合模型已成为一种常见做法,并且可以成为改善其预测性能的有效方法,尤其是当组合的模型完全不同时。在本文中,提出了一种使用多元线性回归模型的新型人工神经网络混合算法,以产生比传统人工神经网络更通用,更准确的模型来解决分类问题。实证结果表明,与传统的人工神经网络以及其他一些分类模型(例如线性判别分析(LDA),二次判别分析(QDA),K近邻(KNN),以及使用基准和实际应用数据集的支持向量机(SVM)。这些数据集的类别数量(两个与多个)和数据源(合成与现实世界)不同。因此,它可以用作解决分类问题的适当替代方法,特别是在需要更高的预测精度时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号