首页> 外文期刊>Expert Systems with Application >ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features
【24h】

ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features

机译:通过基于虚拟QRS图像的几何特征的神经SVM-KNN混合分类器进行ECG心律失常识别

获取原文
获取原文并翻译 | 示例

摘要

In this study, a new supervised noise-artifact-robust heart arrhythmia fusion classification solution, is introduced. Proposed method consists of structurally diverse classifiers with a new QRS complex geometrical feature extraction technique. Toward this objective, first, the events of the electrocardiogram (ECG) signal are detected and delineated using a robust wavelet-based algorithm. Then, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Next, the curve length of each excerpted segment is calculated and is used as the element of the feature space. Discrimination power of proposed classifier in isolation of different Gold standard beats was assessed with accuracy 98.20%. Also, proposed learning machine was applied to 7 arrhythmias belonging to 15 different records and accuracy 98.06% was achieved. Comparisons with peer-reviewed studies prove a marginal progress in computerized heart arrhythmia recognition technologies.
机译:在这项研究中,介绍了一种新的有监督的噪声-伪像-鲁棒性心律不齐融合分类解决方案。所提出的方法由结构多样的分类器和新的QRS复杂几何特征提取技术组成。为了实现这一目标,首先,使用基于鲁棒小波的算法检测并描绘出心电图(ECG)信号的事件。然后,将每个QRS区域及其对应的离散小波变换(DWT)假定为虚像,并将它们中的每一个划分为八个极性扇区。接下来,计算每个摘录段的曲线长度,并将其用作特征空间的元素。评估拟议的分类器在隔离不同金标准心跳中的辨别力,准确度为98.20%。此外,提出的学习机应用于15种不同记录的7种心律不齐,准确率达到98.06%。与同行评审研究的比较证明,计算机心律失常识别技术的进展很小。

著录项

  • 来源
    《Expert Systems with Application》 |2012年第2期|p.2047-2058|共12页
  • 作者单位

    Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran,Cardio Vascular Research Croup (CVRC), K.N. Toosi University of Technology, Tehran, Iran;

    Cardio Vascular Research Croup (CVRC), K.N. Toosi University of Technology, Tehran, Iran,Department of Mechatronic Engineering, Islamic Aiad University, South Tehran Branch, Iran,Young Researchers Club, Islamic Azad University, South Tehran Branch, Tehran. Iran;

    Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran,Cardio Vascular Research Croup (CVRC), K.N. Toosi University of Technology, Tehran, Iran;

    Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran,Cardio Vascular Research Croup (CVRC), K.N. Toosi University of Technology, Tehran, Iran;

    Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran,Cardio Vascular Research Croup (CVRC), K.N. Toosi University of Technology, Tehran, Iran,Department of Mechatronic Engineering, Islamic Aiad University, South Tehran Branch, Iran;

    Department of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    feature extraction; curve length method; support vector machine; k-nearest neighbors; multi layer perceptron; fusion (hybrid) classification; arrhythmia classification; supervised learning machine;

    机译:特征提取;曲线长度法支持向量机k近邻;多层感知器融合(混合)分类;心律失常分类;监督学习机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号