首页> 外文期刊>Expert systems with applications >Training neural networks using Central Force Optimization and Particle Swarm Optimization: Insights and comparisons
【24h】

Training neural networks using Central Force Optimization and Particle Swarm Optimization: Insights and comparisons

机译:使用中央力优化和粒子群优化训练神经网络:见解和比较

获取原文
获取原文并翻译 | 示例

摘要

Central Force Optimization (CFO) is a novel and upcoming metaheuristic technique that is based upon physical kinematics. It has previously been demonstrated that CFO is effective when compared with other metaheuristic techniques when applied to multiple benchmark problems and some real world applications. This work applies the CFO algorithm to training neural networks for data classification. As a proof of concept, the CFO algorithm is first applied to train a basic neural network that represents the logical XOR function. This work is then extended to train two different neural networks in order to properly classify members of the Iris data set. These results are compared and contrasted to results gathered using Particle Swarm Optimization (PSO) in the same applications. Similarities and differences between CFO and PSO are also explored in the areas of algorithm design, computational complexity, and natural basis. The paper concludes that CFO is a novel and promising meta-heuristic that is competitive with if not superior to the PSO algorithm, and there is much room to further improve it.
机译:中央力量优化(CFO)是一种基于物理运动学的新颖且即将出现的元启发式技术。先前已经证明,将CFO与应用于其他基准问题和某些实际应用的其他元启发式技术相比,是有效的。这项工作将CFO算法应用于训练神经网络以进行数据分类。作为概念证明,首先将CFO算法应用于训练代表逻辑XOR函数的基本神经网络。然后将这项工作扩展为训练两个不同的神经网络,以便正确地对Iris数据集的成员进行分类。将这些结果与在相同应用程序中使用粒子群优化(PSO)收集的结果进行比较和对比。 CFO和PSO之间的异同也在算法设计,计算复杂性和自然基础方面进行了探讨。本文的结论是,CFO是一种新颖且很有前途的元启发式算法,与PSO算法相比,即使不优于PSO算法,它也具有竞争力,并且还有很大的改进空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号