首页> 外文期刊>Expert Systems with Application >A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM)
【24h】

A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM)

机译:专家目标识别系统的一种新方法:遗传小波极限学习机(GAWELM)

获取原文
获取原文并翻译 | 示例

摘要

In last year's, the expert target recognition has been become very important topic in radar literature. In this study, a target recognition system is introduced for expert target recognition (ATR) using radar target echo signals of High Range Resolution (HRR) radars. This study includes a combination of an adaptive feature extraction and classification using optimum wavelet entropy parameter values. The features used in this study are extracted from radar target echo signals. Herein, a genetic wavelet extreme learning machine classifier model (GAWELM) is developed for expert target recognition. The CAWELM composes of three stages. These stages of GAWELM are genetic algorithm, wavelet analysis and extreme learning machine (ELM) classifier. In previous studies of radar target recognition have shown that the learning speed of feedforward networks is in general much slower than required and it has been a major disadvantage. There are two important causes. These are: (1) the slow gradient-based learning algorithms are commonly used to train neural networks, and (2) all the parameters of the networks are fixed iteratively by using such learning algorithms. In this paper, a new learning algorithm named extreme learning machine (ELM) for single-hidden layer feedforward networks (SLFNs) Ahem, Delisle, et al., 1989; Al-Otum & Al-Sowayan, 2011; Avci, Turkoglu, & Poyraz, 2005a, 2005b; Biswal, Dash, & Panigrahi, 2009; Frigui et al., in press; Cao, Lin, & Huang, 2010; Guo, Rivero, Dorado, Munteanu, & Pazos, 2011; Famili. Shen, Weber, & Simoudis, 1997; Han & Huang, 2006; Huang, Cai, Chen, & Liu, 2011; Huang, Chen, & Siew, 2006; Huang & Siew, 2005; Huang, Liu, Gao, & Guo, 2009; Jiang, Liu, Li, & Tang, 2011; Kubrusly & Levan, 2009; Le, Tamura, & Matsumoto, 2011; Lhermitte et al., 2011; Martinez-Martinez et al., 2011; Matlab, 2011; Nelson, Starzyk, & Ensley, 2002; Nejad & Zakeri, 2011; Tabib, Sathe, Deshpande, & Joshi, 2009; Tang, Sun, Tang, Zhou, & Wei, 2011, which randomly choose hidden nodes and analytically determines the output weights of SLFNs, to eliminate the these disadvantages of feedforward networks for expert target recognition area. Then, the genetic algorithm (GA) stage is used for obtaining the feature extraction method and finding the optimum wavelet entropy parameter values. Herein, the optimal one of four variant feature extraction methods is obtained by using a genetic algorithm (GA). The four feature extraction methods proposed GAWELM model are discrete wavelet transform (DWT), discrete wavelet transform-short-time Fourier transform (DWT-STFT), discrete wavelet transform-Born-Jordan time-frequency transform (DWT-BJTFT), and discrete wavelet transform-Choi-Williams time-frequency transform (DWT-CWTFT). The discrete wavelet transform stage is performed for optimum feature extraction in the time-frequency domain. The discrete wavelet transform stage includes discrete wavelet transform and calculating of discrete wavelet entropies. The extreme learning machine (ELM) classifier is performed for evaluating the fitness function of the genetic algorithm and classification of radar targets. The performance of the developed GAWELM expert radar target recognition system is examined by using noisy real radar target echo signals. The applications results of the developed GAWELM expert radar target recognition system show that this GAWELM system is effective in rating real radar target echo signals. The correct classification rate of this GAWELM system is about 90% for radar target types used in this study.
机译:去年,专家目标识别已成为雷达文献中非常重要的话题。在这项研究中,引入了一种目标识别系统,用于使用高分辨力(HRR)雷达的雷达目标回波信号进行专家目标识别(ATR)。这项研究包括使用最佳小波熵参数值的自适应特征提取和分类的组合。本研究使用的特征是从雷达目标回波信号中提取的。在这里,遗传小波极限学习机分类器模型(GAWELM)被开发用于专家目标识别。 CAWELM由三个阶段组成。 GAWELM的这些阶段是遗传算法,小波分析和极限学习机(ELM)分类器。在先前的雷达目标识别研究中,前馈网络的学习速度通常比要求的要慢得多,这是主要的缺点。有两个重要原因。它们是:(1)基于慢梯度的学习算法通常用于训练神经网络,并且(2)使用此类学习算法可迭代地固定网络的所有参数。在本文中,一种新的学习算法称为极限学习机(ELM),用于单隐藏层前馈网络(SLFN)Ahem,Delisle等人,1989; Al-Otum和Al-Sowayan,2011年; Avci,Turkoglu和Poyraz,2005a,2005b; Biswal,Dash和Panigrahi,2009年; Frigui等人,印刷中。曹林和黄,2010; Guo,Rivero,Dorado,Muntanu和Pazos,2011;家族Shen,Weber&Simoudis,1997; Han&Huang,2006;黄,蔡,陈和刘,2011;黄陈&萧,2006; Huang&Siew,2005;黄,刘,高和郭,2009;江,刘,李和唐,2011; Kubrusly&Levan,2009; Le,Tamura和Matsumoto,2011年; Lhermitte等,2011; Martinez-Martinez et al。,2011; Matlab,2011年; Nelson,Starzyk和Ensley,2002年; Nejad&Zakeri,2011; Tabib,Sathe,Deshpande和Joshi,2009年; Tang,Sun,Tang,Zhou&Wei,2011,该算法随机选择隐藏节点并分析确定SLFN的输出权重,从而消除了前馈网络在专家目标识别领域的这些缺点。然后,使用遗传算法(GA)阶段获得特征提取方法并找到最佳小波熵参数值。在此,通过使用遗传算法(GA)获得四种变体特征提取方法中的最佳方法。 GAWELM模型提出的四种特征提取方法是离散小波变换(DWT),离散小波变换-短时傅立叶变换(DWT-STFT),离散小波变换-Born-Jordan时频变换(DWT-BJTFT)和离散小波变换-Choi-Williams时频变换(DWT-CWTFT)。执行离散小波变换阶段以在时频域中进行最佳特征提取。离散小波变换阶段包括离散小波变换和离散小波熵的计算。执行极限学习机(ELM)分类器以评估遗传算法的适应度函数和雷达目标的分类。通过使用嘈杂的真实雷达目标回波信号来检查开发的GAWELM专家雷达目标识别系统的性能。研发的GAWELM专家雷达目标识别系统的应用结果表明,该GAWELM系统可有效地对真实雷达目标回波信号进行评级。对于本研究中使用的雷达目标类型,该GAWELM系统的正确分类率约为90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号