首页> 外文期刊>Expert Systems with Application >A new automatic target recognition system based on wavelet extreme learning machine
【24h】

A new automatic target recognition system based on wavelet extreme learning machine

机译:基于小波极限学习机的新型目标自动识别系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an automatic system is presented for target recognition using target echo signals of High Resolution Range (HRR) radars. This paper especially deals with combination of the feature extraction and classification from measured real target echo signal waveforms by using X-band pulse radar. The past studies in the field of radar target recognition have shown that the learning speed of feedforward neural networks is in general much slower than required and it has been a major disadvantage. There are two key reasons forth is status of feedforward neural networks: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms (Feng, Huang, Lin, & Gay, 2009; Huang & Siew, 2004, 2005; Huang & Chen, 2007, 2008; Huang, Chen, & Siew, 2006; Huang, Ding, & Zhou, 2010; Huang, Zhu, & Siew, 2004; Huang, Liang, Rong, Saratchandran, & Sundararajan, 2005; Huang, Zhou, Ding, & Zhang, in press; Huang, Li, Chen, & Siew, 2008; Huang, Wang, & Lan, 2011; Huang et al., 2006; Huang, Zhu, & Siew, 2006a, 2006b; Lan, Soh, & Huang, 2009; Li, Huang, Saratchandran, & Sundararajan, 2005; Liang, Huang, Saratchandran, & Sundararajan, 2006; Liang, Saratchandran, Huang, & Sundararajan, 2006; Rong, Huang, Saratchandran, & Sundararajan, 2009; Wang & Huang, 2005; Wang, Cao, & Yuan, 2011; Yeu, Lim, Huang, Agarwal, & Ong, 2006; Zhang, Huang, Sundararajan, & Saratchandran, 2007; Zhu, Qjn, Suganthan, & Huang, 2005). To resolve these disadvantages of feedforward neural networks for automatic target recognition area in this paper suggested a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) (Feng, Huang, Lin, & Gay, 2009; Huang & Siew, 2004, 2005; Huang & Chen, 2007, 2008; Huang, Chen, & Siew, 2006; Huang, Ding, & Zhou, 2010; Huang, Zhu, & Siew, 2004; Huang, Liang, Rong, Saratchandran, & Sundararajan, 2005; Huang, Zhou, Ding, & Zhang, in press; Huang, Li, Chen, & Siew, 2008; Huang, Wang, & Lan, 2011; Huang et al., 2006; Huang, Zhu, & Siew, 2006a, 2006b; Lan, Soh, & Huang, 2009; Li, Huang, Saratchandran, & Sundararajan, 2005; Liang, Huang, Saratchandran, & Sundararajan, 2006; Liang, Saratchandran, Huang, & Sundararajan, 2006; Rong, Huang, Saratchandran, & Sundararajan, 2009; Wang & Huang, 2005; Wang, Cao, & Yuan, 2011; Yeu, Lim, Huang, Agarwal, & Ong, 2006; Zhang, Huang, Sundararajan, & Saratchandran, 2007; Zhu, Qin, Suganthan, & Huang, 2005) which randomly choose hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. Moreover, the Discrete Wavelet Transform (DWT) and wavelet entropy is used for adaptive feature extraction in the time-frequency domain in feature extraction stage to strengthen the premium features of the ELM in this study. The correct recognition performance of this new system is compared with feedforward neural networks. The experimental results show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks.
机译:在本文中,提出了一种自动系统,该系统使用高分辨率范围(HRR)雷达的目标回波信号进行目标识别。本文特别讨论了使用X波段脉冲雷达从实测目标回波信号波形中进行特征提取和分类的组合。雷达目标识别领域的过去研究表明,前馈神经网络的学习速度通常比要求的要慢得多,这是一个主要的缺点。提出前馈神经网络的状态有两个关键原因:(1)基于慢梯度的学习算法被广泛用于训练神经网络,(2)使用此类学习算法迭代地调整网络的所有参数( Feng,Huang,Lin,&Gay,2009; Huang&Siew,2004,2005; Huang&Chen,2007,2008; Huang,Chen,&Siew,2006; Huang,Ding,&Zhou,2010; Huang,Zhu,&,2009; Siew,2004; Huang,Liang,Rong,Saratchandran,&Sundararajan,2005; Huang,Zhou,Ding&Zhang,印刷中; Huang,Li,Chen,&Siew,2008; Huang,Wang,&Lan,2011; Huang et al。,2006; Huang,Zhu,&Siew,2006a,2006b; Lan,Soh,&Huang,2009; Li,Huang,Saratchandran,&Sundararajan,2005; Liang,Huang,Saratchandran,&Sundararajan,2006; Liang,Huang,2006; Saratchandran,Huang,&Sundararajan,2006; Rong,Huang,Saratchandran,&Sundararajan,2009; Wang&Huang,2005; Wang,Cao,&Yuan,2011; Yeu,Lim,Huang,Agarwal,&Ong,2006;张, Huang,Sundararajan和Saratchandran,2007; Zh u,Qjn,Suganthan,&Huang,2005)。为了解决前馈神经网络用于自动目标识别区域的这些缺点,本文提出了一种新的学习算法,即用于单层前馈神经网络(SLFN)的极限学习机(ELM)(Feng,Huang,Lin,&Gay,2009 ; Huang&Siew,2004,2005; Huang&Chen,2007,2008; Huang,Chen,&Siew,2006; Huang,Ding,&Zhou,2010; Huang,Zhu,&Siew,2004; Huang,Liang,Rong, Saratchandran&Sundararajan,2005; Huang,Zhou,Ding&Zhang,in press; Huang,Li,Chen,&Siew,2008; Huang,Wang,&Lan,2011; Huang et al。,2006; Huang,Zhu,2011; &Siew,2006a,2006b; Lan,Soh,&Huang,2009; Li,Huang,Saratchandran,&Sundararajan,2005; Liang,Huang,Saratchandran,&Sundararajan,2006; Liang,Saratchandran,Huang,&Sundararajan,2006;荣,Huang,Saratchandran,&Sundararajan,2009; Wang&Huang,2005; Wang,Cao,&Yuan,2011; Yeu,Lim,Huang,Agarwal,&Ong,2006; Zhang,Huang,Sundararajan,&Saratchandran,2007;朱,秦,苏甘丹& (Huang,2005)随机选择隐藏节点并通过分析确定SLFN的输出权重。从理论上讲,该算法倾向于以极快的学习速度提供良好的泛化性能。此外,在本研究中,离散小波变换(DWT)和小波熵被用于特征提取阶段的时频域中的自适应特征提取,以增强ELM的优良特征。将该新系统的正确识别性能与前馈神经网络进行了比较。实验结果表明,新算法在大多数情况下都能产生良好的泛化性能,并且比传统的前馈神经网络流行学习算法学习速度快数千倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号