首页> 外文期刊>Expert Systems with Application >Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing
【24h】

Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing

机译:SVM-RFE在脑电信号上的应用,用于检测与情感价处理相关的最相关头皮区域

获取原文
获取原文并翻译 | 示例

摘要

In this work, event related potentials (ERPs) induced by visual stimuli categorized with different value of affective valence are studied. EEG signals are recorded during visualization of selected pictures belonging to International Affective Picture System (IAPS). A Morlet wavelet filter is used to transform the EEG input space to a topography-time-frequency feature space. Support vector machine-recursive feature elimination (SVM-RFE) is applied for detecting scalp spectral dynamics of interest (SSDOIs) in this feature space, allowing to identify the most relevant time intervals, frequency bands and EEG channels. This feature selection method has proven to outperform the classical t-test in the discrimination of brain cortex regions involved in affective valence processing. Furthermore, the presented combination of feature extraction and selection techniques can be applied as an alternative in other different clinical applications.
机译:在这项工作中,研究了由视觉刺激引起的事件相关电位(ERP),这些电位分类具有不同的情感价。在可视化属于国际情感图片系统(IAPS)的所选图片期间记录EEG信号。 Morlet小波滤波器用于将EEG输入空间转换为地形时频特征空间。支持向量机递归特征消除(SVM-RFE)用于检测该特征空间中感兴趣的头皮频谱动力学(SSDOI),从而可以识别最相关的时间间隔,频带和EEG通道。这种特征选择方法在区分涉及情感价处理的大脑皮层区域方面已证明优于传统的t检验。此外,所提出的特征提取和选择技术的组合可以用作其他不同临床应用中的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号