首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals
【2h】

Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals

机译:整合24种特征类型以使用头皮EEG信号准确检测和预测癫痫发作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The neurological disorder epilepsy causes substantial problems to the patients with uncontrolled seizures or even sudden deaths. Accurate detection and prediction of epileptic seizures will significantly improve the life quality of epileptic patients. Various feature extraction algorithms were proposed to describe the EEG signals in frequency or time domains. Both invasive intracranial and non-invasive scalp EEG signals have been screened for the epileptic seizure patterns. This study extracted a comprehensive list of 24 feature types from the scalp EEG signals and found 170 out of the 2794 features for an accurate classification of epileptic seizures. An accuracy (Acc) of 99.40% was optimized for detecting epileptic seizures from the scalp EEG signals. A balanced accuracy (bAcc) was calculated as the average of sensitivity and specificity and our seizure detection model achieved 99.61% in bAcc. The same experimental procedure was applied to predict epileptic seizures in advance, and the model achieved Acc = 99.17% for predicting epileptic seizures 10 s before happening.
机译:神经性癫痫病会给癫痫发作或猝死患者带来严重问题。准确检测和预测癫痫发作将显着改善癫痫患者的生活质量。提出了各种特征提取算法来描述频域或时域中的脑电信号。侵袭性颅内和非侵袭性头皮脑电图信号均已针对癫痫发作模式进行了筛查。这项研究从头皮脑电图信号中提取了24种特征类型的综合列表,并从2794种特征中发现了170种,用于准确分类癫痫发作。优化了99.40%的准确度(Acc),可从头皮EEG信号中检测出癫痫发作。计算出的平衡准确度(bAcc)为敏感性和特异性的平均值,我们的癫痫发作检测模型的bAcc达到了99.61%。预先采用相同的实验程序预测癫痫发作,该模型在发生癫痫发作前10 s达到Acc = 99.17%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号