首页> 外文期刊>Expert Systems with Application >Personal bankruptcy prediction by mining credit card data
【24h】

Personal bankruptcy prediction by mining credit card data

机译:通过挖掘信用卡数据进行个人破产预测

获取原文
获取原文并翻译 | 示例

摘要

A personal bankruptcy prediction system running on credit card data is proposed. Personal bankruptcy, which usually results in significant losses to creditors, is a rapidly increasing yet little understood phenomenon. The most commonly used methods in personal bankruptcy prediction are credit scoring models. Some data mining models have also been investigated in this domain. Neither the scoring models nor the existing data mining methods adequately take sequence information in credit card data into account. In our system, sequence patterns, obtained by developing sequence mining techniques and applying them to credit card data from one major Canadian bank, are employed as main predictors. The mined sequence patterns, which we refer to as bankruptcy features, are represented in low-dimensional vector space. From the new feature space, which can be extended with some existing prediction-capable features (e.g., credit score), a support vector machine (SVM) classifier is built to combine these mined and already existing features. Our system is readily comprehensible and demonstrates promising prediction performance.
机译:提出了一种基于信用卡数据的个人破产预测系统。个人破产,通常会给债权人造成重大损失,是一种迅速增加但鲜为人知的现象。个人破产预测中最常用的方法是信用评分模型。在此领域中还研究了一些数据挖掘模型。计分模型或现有数据挖掘方法都没有充分考虑信用卡数据中的序列信息。在我们的系统中,通过开发序列挖掘技术并将其应用于来自加拿大一家主要银行的信用卡数据而获得的序列模式被用作主要预测指标。挖掘的序列模式(我们称为破产特征)在低维向量空间中表示。从可以用一些现有的具有预测功能的功能(例如,信用评分)扩展的新功能空间中,构建了一个支持向量机(SVM)分类器,以将这些挖掘的和现有的功能组合在一起。我们的系统易于理解,并显示出有希望的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号