首页> 外文会议>Rough Sets, fuzzy sets, data mining and granular computing >Data Mining Using Rules Extracted from SVM: An Application to Churn Prediction in Bank Credit Cards
【24h】

Data Mining Using Rules Extracted from SVM: An Application to Churn Prediction in Bank Credit Cards

机译:使用从SVM中提取的规则进行数据挖掘:在银行信用卡客户流失预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this work, an eclectic procedure for rule extraction from Support Vector Machine is proposed, where Tree is generated using Naive Bayes Tree (NBTree) resulting in the SVM+NBTree hybrid. The data set analyzed in this paper is about churn prediction in bank credit cards and is obtained from Business Intelligence Cup 2004. The data set under consideration is highly unbalanced with 93.11% loyal and 6.89% churned customers. Since identifying churner is of paramount importance from business perspective, sensitivity of classification model is more critical. Using the available, original unbalanced data only, we observed that the proposed hybrid SVM+NBTree yielded the best sensitivity compared to other classifiers.
机译:在这项工作中,提出了一种从支持向量机中提取规则的折衷方法,其中使用朴素贝叶斯树(NBTree)生成树,从而生成SVM + NBTree混合。本文分析的数据集是有关2004年商业智能杯的银行信用卡流失预测的。所考虑的数据集高度不平衡,忠诚度为93.11%,客户流失率为6.89%。由于从业务的角度来看识别客户是至关重要的,所以分类模型的敏感性更为关键。仅使用可用的原始不平衡数据,我们观察到与其他分类器相比,提出的混合SVM + NBTree产生了最佳灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号