首页> 外文期刊>Expert Systems with Application >Fusion of feature sets and classifiers for facial expression recognition
【24h】

Fusion of feature sets and classifiers for facial expression recognition

机译:融合特征集和分类器以进行面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel method for facial expression recognition that employs the combination of two different feature sets in an ensemble approach. A pool of base support vector machine classifiers is created using Cabor filters and Local Binary Patterns. Then a multi-objective genetic algorithm is used to search for the best ensemble using as objective functions the minimization of both the error rate and the size of the ensemble. Experimental results on JAFFE and Cohn-Kanade databases have shown the efficiency of the proposed strategy in finding powerful ensembles, which improves the recognition rates between 5% and 10% over conventional approaches that employ single feature sets and single classifiers.
机译:本文提出了一种新颖的面部表情识别方法,该方法在整体方法中采用了两个不同特征集的组合。使用Cabor过滤器和本地二进制模式创建基本支持向量机分类器池。然后,使用多目标遗传算法以最小化错误率和整体大小为目标函数来搜索最佳整体。在JAFFE和Cohn-Kanade数据库上进行的实验结果表明,所提出的策略在发现强大合奏方面的效率很高,与采用单个特征集和单个分类器的常规方法相比,其识别率提高了5%至10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号