首页> 外文期刊>Expert Systems with Application >Category-specific models for ranking effective paraphrases in community Question Answering
【24h】

Category-specific models for ranking effective paraphrases in community Question Answering

机译:特定类别的模型,用于在社区中对有效释义进行排名

获取原文
获取原文并翻译 | 示例

摘要

Platforms for community-based Question Answering (cQA) are playing an increasing role in the synergy of information-seeking and social networks. Being able to categorize user questions is very important, since these categories are good predictors for the underlying question goal, viz. informational or subjective. Furthermore, an effective cQA platform should be capable of detecting similar past questions and relevant answers, because it is known that a high number of best answers are reusable. Therefore, question paraphrasing is not only a useful but also an essential ingredient for effective search in cQA-However, the generated paraphrases do not necessarily lead to the same answer set, and might differ in their expected quality of retrieval, for example, in their power of identifying and ranking best answers higher. We propose a novel category-specific learning to rank approach for effectively ranking paraphrases for cQA. We describe a number of different large-scale experiments using logs from Yahoo! Search and Yahoo! Answers, and demonstrate that the subjective and objective nature of cQA questions dramatically affect the recall and ranking of past answers, when fine-grained category information is put into its place. Then, category-specific models are able to adapt well to the different degree of objectivity and subjectivity of each category, and the more specific the models are, the better the results, especially when benefiting from effective semantic and syntactic features.
机译:基于社区的问答系统(cQA)在信息寻求和社交网络的协同作用中发挥着越来越重要的作用。能够对用户问题进行分类非常重要,因为这些类别可以很好地预测潜在问题的目标,即。信息性或主观性的。此外,有效的cQA平台应该能够检测到类似的过去问题和相关答案,因为众所周知,大量最佳答案是可重用的。因此,问题释义不仅是在cQA中进行有效搜索的有用而且是必不可少的组成部分。但是,生成的释义不一定会导致相同的答案集,并且可能在预期的检索质量上有所不同,例如,确定和排列最佳答案的能力更高。我们提出了一种新颖的特定类别学习排序方法,以有效地对cQA的释义进行排名。我们使用Yahoo!的日志描述了许多不同的大规模实验。搜索和Yahoo!答案,并证明当将细粒度的类别信息放入位置时,cQA问题的主观和客观性质会极大地影响过去答案的回忆和排名。然后,特定于类别的模型能够很好地适应每个类别的不同程度的客观性和主观性,并且模型越具体,结果越好,尤其是在受益于有效的语义和句法特征时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号