首页> 外文期刊>Expert Systems with Application >An improved demand forecasting method to reduce bullwhip effect in supply chains
【24h】

An improved demand forecasting method to reduce bullwhip effect in supply chains

机译:一种改进的需求预测方法,可减少供应链中的牛鞭效应

获取原文
获取原文并翻译 | 示例

摘要

Accurate forecasting of demand under uncertain environment is one of the vital tasks for improving supply chain activities because order amplification or bullwhip effect (BWE) and net stock amplification (NSAmp) are directly related to the way the demand is forecasted. Improper demand forecasting results in increase in total supply chain cost including shortage cost and backorder cost. However, these issues can be resolved to some extent through a proper demand forecasting mechanism. In this study, an integrated approach of Discrete wavelet transforms (DWT) analysis and artificial neural network (ANN) denoted as DWT-ANN is proposed for demand forecasting. Initially, the proposed model is tested and validated by conducting a comparative study between Autoregressive Integrated Moving Average (ARIMA) and proposed DWT-ANN model using a data set from open literature. Further, the model is tested with demand data collected from three different manufacturing firms. The analysis indicates that the mean square error (MSE) of DWT-ANN is comparatively less than that of the ARIMA model. A better forecasting model generally results in reduction of BWE. Therefore, BWE and NSAmp values are estimated using a base-stock inventory control policy for both DWT-ANN and ARIMA models. It is observed that these parameters are comparatively less in case of DWT-ANN model.
机译:在不确定的环境下准确预测需求是改善供应链活动的重要任务之一,因为订单放大或牛鞭效应(BWE)和净库存放大(NSAmp)与需求预测方式直接相关。需求预测不正确会导致供应链总成本(包括短缺成本和缺货成本)增加。但是,可以通过适当的需求预测机制在某种程度上解决这些问题。在这项研究中,提出了将离散小波变换(DWT)分析和人工神经网络(ANN)称为DWT-ANN的集成方法,用于需求预测。最初,使用公开文献中的数据集,通过对自回归综合移动平均线(ARIMA)和提出的DWT-ANN模型进行比较研究,对提出的模型进行了测试和验证。此外,使用从三个不同制造公司收集的需求数据对模型进行了测试。分析表明,DWT-ANN的均方误差(MSE)相对小于ARIMA模型。更好的预测模型通常会降低BWE。因此,使用DWT-ANN和ARIMA模型的基本库存控制策略估算BWE和NSAmp值。可以看出,在DWT-ANN模型中,这些参数相对较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号