首页> 外文期刊>Expert Systems with Application >An effective query recommendation approach using semantic strategies for intelligent information retrieval
【24h】

An effective query recommendation approach using semantic strategies for intelligent information retrieval

机译:使用语义策略进行智能信息检索的有效查询推荐方法

获取原文
获取原文并翻译 | 示例

摘要

With the explosive growth of web information, search engines have become the mainstream tools of information retrieval (IR). However, a notable problem emerged in the current 1R systems is that the input queries are usually too short and too ambiguous to express their actual idea which largely affects the performance of IR systems. In this study, a novel query recommendation technology which suggests a list of related queries is proposed to resolve these problems. The query concepts can be firstly extracted from the web-snippets of the search result returned by the input query. A bipartite graph is subsequently built to identify the related queries, and the query similarity can be calculated by such bipartite graph. Moreover, by analyzing the URLs clicked by users, we find that some tokens appeared in URLs are very meaningful, especial for some typical topic-based pages. Therefore, these potential tokens which can provide a brief description from the subject of the URL are also considered. In order to reveal the real semantics between queries, the approach TF-IQF model is further discussed, and three features of a query, i.e. clicked documents, associated query and reversed query, are utilized in our approach in depth. Such a method could hopefully acquire the comprehensive idea of a query. To investigate how these three features could be used effectively for query recommendation in search engine, we adopt the benchmark evaluation criterions in our experiments, and the experimental results show its promising results in comparison with state of the art methods.
机译:随着Web信息的爆炸性增长,搜索引擎已成为信息检索(IR)的主流工具。但是,当前的1R系统中出现的一个显着问题是输入查询通常太短且太含糊,无法表达其实际想法,这在很大程度上影响了IR系统的性能。在这项研究中,提出了一种新颖的查询推荐技术,该技术建议了一系列相关查询,以解决这些问题。可以首先从输入查询返回的搜索结果的网页摘要中提取查询概念。随后建立二部图以标识相关查询,并且可以通过这种二部图来计算查询相似度。此外,通过分析用户单击的URL,我们发现URL中出现的某些标记非常有意义,特别是对于某些典型的基于主题的页面而言。因此,还考虑了可以从URL主题提供简短描述的这些潜在令牌。为了揭示查询之间的真实语义,我们进一步讨论了TF-IQF方法,并在我们的方法中深入利用了查询的三个特征,即单击文档,关联查询和反向查询。这种方法有望获得全面的查询思想。为了研究如何将这三个功能有效地用于搜索引擎中的查询推荐,我们在实验中采用了基准评估标准,并且实验结果与最先进的方法相比显示出了令人鼓舞的结果。

著录项

  • 来源
    《Expert Systems with Application》 |2014年第2期|366-372|共7页
  • 作者单位

    School of IOT Engineering, Jiangnan University, Wuxi 214122, China,Department of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 561756, Republic of Korea;

    School of IOT Engineering, Jiangnan University, Wuxi 214122, China;

    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 561756, Republic of Korea;

    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 561756, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Query recommendation; Genetic algorithm; Knowledge discovery; Clustering; Information retrieval;

    机译:查询推荐;遗传算法知识发现;集群;信息检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号