首页> 外文期刊>Expert Systems with Application >Scene object recognition for mobile robots through Semantic Knowledge and Probabilistic Graphical Models
【24h】

Scene object recognition for mobile robots through Semantic Knowledge and Probabilistic Graphical Models

机译:通过语义知识和概率图形模型识别移动机器人的场景对象

获取原文
获取原文并翻译 | 示例

摘要

Scene object recognition is an essential requirement for intelligent mobile robots. In addition to geometric or appearance features, modern recognition systems strive to incorporate contextual information, normally modelled through Probabilistic Graphical Models (PGMs) or Semantic Knowledge (SK). However, these approaches, separately, show some weaknesses that limit their application, e.g., the exponential complexity of the probabilistic inference over PGMs or the inability of SK to handle uncertainty. This paper presents a hybrid PGM-SK system for object recognition that integrates both techniques reducing their individual limitations and gaining in probabilistic inference efficiency, performance robustness, uncertainty handling, and providing coherent results according to domain knowledge codified by a human expert. We support this claim with an extensive experimental evaluation according to both recognition success and time requirements in real scenarios from two datasets (NYU2 and UMA-offices). The yielded figures support the suitability of the hybrid PGM-SK recognition system, and its applicability to mobile robotic agents. (C) 2015 Elsevier Ltd. All rights reserved.
机译:场景对象识别是智能移动机器人的基本要求。除了几何或外观特征,现代识别系统还努力整合通常通过概率图形模型(PGM)或语义知识(SK)建模的上下文信息。但是,这些方法分别显示出一些缺点,这些缺点限制了它们的应用,例如,概率推断对PGM的指数复杂性或SK无法处理不确定性。本文提出了一种用于对象识别的混合PGM-SK系统,该系统集成了两种技术,可减少其各自的局限性并获得概率推断效率,性能鲁棒性,不确定性处理,并根据人类专家编写的领域知识提供一致的结果。我们根据来自两个数据集(NYU2和UMA-offices)的真实场景中的识别成功率和时间要求,通过广泛的实验评估来支持这一主张。得出的数字支持混合PGM-SK识别系统的适用性,以及其对移动机器人代理的适用性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号