首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Unsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation
【24h】

Unsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation

机译:使用知识传播的对象分类,分段和识别的概率对象模型(POM)的无监督学习

获取原文
获取原文并翻译 | 示例

摘要

We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning task and our strategy is to learn and combine elementary POMs that make use of complementary image cues. We describe a novel structure induction procedure, which uses knowledge propagation to enable POMs to provide information to other POMs and ȁC;teach themȁD; (which greatly reduces the amount of supervision required for training and speeds up the inference). In particular, we learn a POM-IP defined on Interest Points using weak supervision [1], [2] and use this to train a POM-mask, defined on regional features, which yields a combined POM that performs segmentation/localization. This combined model can be used to train POM-edgelets, defined on edgelets, which gives a full POM with improved performance on classification. We give detailed experimental analysis on large data sets for classification and segmentation with comparison to other methods. Inference takes five seconds while learning takes approximately four hours. In addition, we show that the full POM is invariant to scale and rotation of the object (for learning and inference) and can learn hybrid objects classes (i.e., when there are several objects and the identity of the object in each image is unknown). Finally, we show that POMs can be used to match between different objects of the same category, and hence, enable objects recognition.
机译:我们提出了一种在最少的监督下学习概率对象模型(POM)的方法,该方法利用不同的视觉提示并执行诸如分类,分割和识别之类的任务。我们将其表述为结构归纳和学习任务,我们的策略是学习和组合利用互补图像线索的基本POM。我们描述了一种新颖的结构归纳程序,该程序利用知识传播使POM能够向其他POM和informationC提供信息。 (这大大减少了培训所需的监督量,并加快了推理速度)。特别是,我们使用弱监督[1],[2]学习了在兴趣点上定义的POM-IP,并使用它来训练在区域特征上定义的POM掩码,从而生成执行分段/定位的组合POM。该组合模型可用于训练在小边上定义的POM-小边,从而提供具有改进的分类性能的完整POM。与其他方法相比,我们对大型数据集进行了分类和细分的详细实验分析。推理需要五秒钟,而学习大约需要四个小时。此外,我们证明了完整的POM对于对象的缩放和旋转是不变的(用于学习和推理),并且可以学习混合对象类(即,当有多个对象并且每个图像中对象的身份未知时) 。最后,我们证明了POM可用于在同一类别的不同对象之间进行匹配,从而实现对象识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号