首页> 外文期刊>Expert Systems with Application >Initial stage clustering when estimating accounting quality measures with self-organizing maps
【24h】

Initial stage clustering when estimating accounting quality measures with self-organizing maps

机译:使用自组织图估计会计质量度量时的初始聚类

获取原文
获取原文并翻译 | 示例

摘要

This study introduces self-organizing maps as a clustering approach for several measures in accounting that rely on local linear regression-based estimation models with an initial and essential clustering phase. Clustering by industry is the most frequently used approach in prior literature when estimating measures such as real activities manipulation or accruals quality. However, this approach has been subject to criticism due to its association with sample attrition and biased outcome measures. The purpose of our study is to develop and evaluate the performance of a self-organizing map (SOM) local regression-based estimation model for several measures of accounting quality. The SOM is built by utilizing general firm characteristics such as regular balance sheet items as cluster variables instead of model specific variables. According to the results, our SOM local regression models outperform previously suggested clustering methods. Simulation tests show that estimation models based on SOM clustering with general firm characteristics detect abnormality in the accounting quality measures much better than previously used clustering methods. By utilizing the SOM approach, the estimation process of the measures is significantly improved which results in more accurate outcome measures that can be used in various contexts including expert systems designed for auditors and investors. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项研究介绍了自组织图,将其作为会计中几种度量的聚类方法,这些度量依赖于具有初始和基本聚类阶段的基于局部线性回归的估计模型。在评估诸如实际活动操纵或应计质量之类的指标时,按行业进行聚类是现有文献中最常用的方法。但是,由于该方法与样本损耗和偏向结果量的关系而受到批评。我们研究的目的是为会计质量的几种度量开发和评估基于自组织图(SOM)局部回归的估计模型的性能。通过使用一般的公司特征(例如,常规资产负债表项目)作为聚类变量而不是模型特定变量来构建SOM。根据结果​​,我们的SOM局部回归模型优于以前建议的聚类方法。仿真测试表明,基于具有一般公司特征的SOM聚类的估计模型能够比以前使用的聚类方法更好地检测会计质量度量中的异常。通过使用SOM方法,可以显着改善措施的估计过程,从而可以在各种情况下使用更准确的结果度量,包括为审计师和投资者设计的专家系统。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号