首页> 外文期刊>Expert Systems with Application >Brain Computer Interface system based on indoor semi-autonomous navigation and motor imagery for Unmanned Aerial Vehicle control
【24h】

Brain Computer Interface system based on indoor semi-autonomous navigation and motor imagery for Unmanned Aerial Vehicle control

机译:基于室内半自动导航和运动图像的无人飞行器控制脑计算机接口系统

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a non-invasive Electroencephalogram (EEG)-based Brain Computer Interface (BC!) system to achieve the easy-to-use and stable control of a low speed Unmanned Aerial Vehicle (UAV) for indoor target searching. The BCI system for UAV control consists of two main subsystems responsible for decision and semi-autonomous navigation. The decision subsystem is established based on the analysis of motor imagery (MI) EEG. The improved cross-correlation method (CC) is used to accomplish the MI feature extraction and the logistic regression method (LR) is employed to complete the MI feature classification and decision. The average classification accuracy rate of the BCI system reaches to 94.36%. The semi-autonomous navigation subsystem is utilized to avoid obstacles automatically for UAV and provide feasible directions for decision subsystem. The actual indoor target searching experiment is carried out to verify the performance of this BCI system. The experiment validates the feasibility and effectiveness of this BCI system for low speed UAV control by using MI and semi-autonomous navigation. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于非侵入性脑电图(EEG)的脑计算机接口(BC!)系统,以实现用于室内目标搜索的低速无人飞行器(UAV)的易用且稳定的控制。用于无人机控制的BCI系统由负责决策和半自主导航的两个主要子系统组成。基于运动图像(MI)脑电图的分析建立决策子系统。改进的互相关方法(CC)用于完成MI特征的提取,逻辑回归法(LR)用于完成MI特征的分类和决策。 BCI系统的平均分类准确率达到94.36%。利用半自主导航子系统为无人机自动避开障碍物,为决策子系统提供可行的指导。进行了实际的室内目标搜索实验,以验证该BCI系统的性能。实验通过使用MI和半自主导航验证了该BCI系统用于低速无人机控制的可行性和有效性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号