首页> 外文期刊>Expert Systems with Application >Situation assessment and decision making for lane change assistance using ensemble learning methods
【24h】

Situation assessment and decision making for lane change assistance using ensemble learning methods

机译:使用集成学习方法进行车道变更辅助的情况评估和决策

获取原文
获取原文并翻译 | 示例

摘要

Lane change maneuvers contribute to a significant number of road traffic accidents. Advanced driver assistance systems (ADAS) that can assess a traffic situation and warn drivers of unsafe lane changes can offer additional safety and convenience. In addition, ADAS can be extended for use in automatic lane changing in driverless vehicles. This paper investigated two ensemble learning methods, random forest, and AdaBoost, for developing a lane change assistance system. The focus on increasing the accuracy of safety critical lane change events has a significant impact on lowering the occurrence of crashes. This is the first study to explore ensemble learning methods for modeling lane changes using a comprehensive set of variables. Detailed vehicle trajectory data from the Next Generation Simulation (NGSIM) dataset in the US were used for model development and testing. The results showed that both ensemble learning methods produced higher classification accuracy and lower false positive rates than the Bayes/Decision tree classifier used in the literature. The impact of misclassification of lane changing events was also studied. A sensitivity analysis performed by varying the accuracy of lane changing showed that the lane keeping accuracy can be increased to as high as 99.1% for the AdaBoost system and 98.7% for the random forest system. The corresponding true positive rates were 96.3% and 94.6%. High accuracy of lane keeping and high true positive rates are desirable due to their safety implications. (C) 2015 Elsevier Ltd. All rights reserved.
机译:变道演习导致大量道路交通事故。先进的驾驶员辅助系统(ADAS)可以评估交通状况并警告驾驶员不安全的车道变更,可以提供额外的安全性和便利性。此外,ADAS可以扩展为用于无人驾驶车辆的自动换道。本文研究了两种集成学习方法,即随机森林和AdaBoost,用于开发车道变更辅助系统。对提高安全关键车道变更事件的准确性的关注对降低事故的发生有重大影响。这是第一个探索集成学习方法的研究,该方法使用一组综合变量对车道变化进行建模。来自美国的下一代仿真(NGSIM)数据集的详细车辆轨迹数据用于模型开发和测试。结果表明,与文献中使用的贝叶斯/决策树分类器相比,两种集成学习方法均产生了更高的分类精度和更低的误报率。还研究了车道变更事件分类错误的影响。通过改变车道变更的准确性进行的敏感性分析表明,对于AdaBoost系统,对车道保持的准确性可以提高到99.1%,对于随机森林系统,可以提高到98.7%。相应的真实阳性率为96.3%和94.6%。由于它们的安全性,因此希望具有较高的车道保持精度和较高的真实阳性率。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号