首页> 外文期刊>Expert Systems with Application >A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification
【24h】

A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification

机译:一种新的基于混合能量分数和熵的心脏收缩期杂音识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a set of novel features of heart sound for the detection of the abnormality of heart sounds and classification of heart murmurs. The features include energy fraction of the first and the second heart sounds (S1-S2EF), energy fraction of heart murmur (HMEF), the maximum energy fraction of heart sound frequency sub-band (HSEFmax), sample entropy of the first and the second heart sounds component (S1-S2sampen) and sample entropy of heart murmur component (HMsampen). Firstly, the heart sound signals were de-noised and normalized, then decomposed by wavelet packet. The features, such as energy fraction and sample entropy were calculated from the reconstructed selective frequency components of heart sound signals. The support vector machine (SVM) was employed as a classifier to detect the abnormality of heart sound and discriminate heart murmurs. A dataset consisting of 80 normal heart sounds and 167 systolic heart murmurs samples, segmented from 40 healthy volunteers and 67 patients, were used to test and validate the proposed method. The performance of our proposed method was assessed in terms of sensitivity, specificity and accuracy. The result showed that our proposed method exhibited a satisfactory performance with a high accuracy of 97.17%, a specificity of over 98.55% and a sensitivity of over 93.48%. This suggests that the presented method can be used as an effective assistance for cardiac auscultation. (C) 2014 Elsevier Ltd. All rights reserved.
机译:本文提出了一套新颖的心音特征,用于检测心音异常和对心脏杂音进行分类。特征包括第一和第二心音的能量分数(S1-S2EF),心脏杂音的能量分数(HMEF),心音频率子带的最大能量分数(HSEFmax),第一和第二心音的样本熵第二个心音分量(S1-S2sampen)和心脏杂音分量的样本熵(HMsampen)。首先,对心音信号进行去噪和归一化,然后通过小波包进行分解。从重构的心音信号的选择性频率分量中计算出能量分数和样本熵等特征。支持向量机(SVM)被用作分类器,以检测心音异常并区分心脏杂音。该数据集由40位健康志愿者和67位患者组成,包括80种正常心音和167例收缩期心脏杂音样本,用于测试和验证该方法。我们在敏感性,特异性和准确性方面评估了我们提出的方法的性能。结果表明,我们提出的方法表现出令人满意的性能,准确度高达97.17%,特异性超过98.55%,灵敏度超过93.48%。这表明所提出的方法可以用作心脏听诊的有效辅助。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号