首页> 外文期刊>Expert Systems with Application >Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics
【24h】

Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics

机译:应用MOVNS(多目标变量邻域搜索)算法解决移动机器人中的路径规划问题

获取原文
获取原文并翻译 | 示例

摘要

Mobile robots must calculate the appropriate navigation path before starting to move to its destination. This calculation is known as the Path Planning (PP) problem. The PP problem is one of the most researched topics in mobile robotics. Taking into account that the PP problem is an NP-hard problem, Multi Objective Evolutionary Algorithms (MOEAs) are good candidates to solve this problem. In this work, a new multi-objective evolutionary approach based on the Variable Neighborhood Search (MOVNS) is proposed to solve the PP problem. To the best of our knowledge, this is the first time that MOVNS is proposed to solve the path planning of mobile robots. The proposed MOVNS handles three different objectives in order to obtain accurate and efficient paths. These objectives are: the path safety, the path length, and the path smoothness (related to the energy consumption). Furthermore, in order to test the proposed MOEA, we have used eight realistic scenarios for the paths calculation. On the other hand, we also compared our proposal with other approaches of the state of the art, showing the advantages of MOVNS. In particular, in order to evaluate the obtained results we applied different quality metrics. Moreover, to demonstrate the statistical robustness of the obtained results we also performed a statistical analysis. Finally, the study shows that the proposed MOVNS is a good alternative to solve the PP problem, producing good paths with less length, more safety, and more smooth movements. We think this is an important contribution to the mobile robotics, and therefore, to the field of expert and intelligent systems. (C) 2016 Elsevier Ltd. All rights reserved.
机译:移动机器人必须在开始移动到目的地之前计算出适当的导航路径。此计算称为路径规划(PP)问题。 PP问题是移动机器人技术中研究最多的主题之一。考虑到PP问题是一个NP难题,因此多目标进化算法(MOEA)是解决此问题的理想选择。在这项工作中,提出了一种新的基于可变邻域搜索(MOVNS)的多目标进化方法来解决PP问题。据我们所知,这是首次提出MOVNS来解决移动机器人的路径规划问题。拟议的MOVNS处理三个不同的目标,以获得准确和有效的路径。这些目标是:路径安全性,路径长度和路径平滑度(与能耗有关)。此外,为了测试拟议的MOEA,我们在路径计算中使用了八个实际方案。另一方面,我们还将我们的提案与其他现有技术进行了比较,显示了MOVNS的优势。特别是,为了评估获得的结果,我们应用了不同的质量指标。此外,为了证明所获得结果的统计稳健性,我们还进行了统计分析。最后,研究表明,提出的MOVNS是解决PP问题的一种很好的选择,它可以产生长度较短,安全性更高且运动更平稳的良好路径。我们认为这是对移动机器人技术的重要贡献,因此对专家和智能系统领域也做出了重要贡献。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号