首页> 外文期刊>Expert Systems with Application >Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization
【24h】

Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization

机译:使用进化多目标优化确定距离差异定位的传感器位置

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the application of a decision support system based on evolutionary multi-objective optimization for deploying sensors in an indoor localization system. Our methods aim to provide the human expert who works as the sensor resource manager with a full set of Pareto efficient solutions of the sensor placement problem. In our analysis, we use five scalar performance measures as objective functions derived from the covariance matrix of the estimation, namely the trace, determinant, maximum eigenvalue, ratio of maximum and minimum eigenvalues, and the uncertainty in a given direction. We run the multi-objective genetic algorithm to optimize these objectives and obtain the Pareto fronts. The paper includes a detailed explanation of every aspect of the system and an application of the proposed decision support system to an indoor infrared positioning system. Final results show the different placement alternatives according to the objectives and the trade-off between different accuracy performance measures can be clearly seen. This approach contributes to the current state-of-the art in the fact that we point out the problems of optimizing a single accuracy measure and propose using a decision support system that provides the resource manager with a full overview of the set of Pareto efficient solutions considering several accuracy metrics. Since the manager will know all the Pareto optimal solutions before deciding the final sensor placement scheme, this method provides more information than dealing with a single function of the weighted objectives. Additionally, we are able to use this system to optimize objectives obtained from fairly complex functions. On the contrary, recent works that are referenced in this paper need to simplify the localization process to obtain tractable problem formulations. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文重点研究基于进化多目标优化的决策支持系统在室内定位系统中部署传感器的应用。我们的方法旨在为作为传感器资源经理的人类专家提供整套Pareto有效解决传感器放置问题的解决方案。在我们的分析中,我们使用五个标量性能度量作为目标函数,这些函数是从估计的协方差矩阵得出的,即迹线,行列式,最大特征值,最大特征值与最小特征值之比以及给定方向上的不确定性。我们运行多目标遗传算法来优化这些目标并获得Pareto前沿。本文包括该系统各个方面的详细说明,以及所提出的决策支持系统在室内红外定位系统中的应用。最终结果表明,根据目标可以选择不同的放置方式,并且可以清楚地看到不同精度性能指标之间的权衡。这种方法对当前的最新技术有所帮助,因为我们指出了优化单个精度度量的问题,并建议使用决策支持系统,该系统为资源管理器提供一组帕累托有效解决方案的完整概述。考虑几个准确性指标。由于管理者在决定最终的传感器放置方案之前将了解所有帕累托最优解,因此该方法比处理加权目标的单个功能提供了更多信息。此外,我们能够使用该系统来优化从相当复杂的功能获得的目标。相反,本文引用的最新工作需要简化定位过程以获得易于处理的问题公式。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号