首页> 外文期刊>Expert Systems with Application >A review of computational methods applied for identification and quantification of atherosclerotic plaques in images
【24h】

A review of computational methods applied for identification and quantification of atherosclerotic plaques in images

机译:用于图像中动脉粥样硬化斑块识别和定量的计算方法综述

获取原文
获取原文并翻译 | 示例

摘要

Evaluation of the composition of atherosclerotic plaques in images is an important task to determine their pathophysiology. Visual analysis is still as the most basic and often approach to determine the morphology of the atherosclerotic plaques. In addition, computer-aided methods have also been developed for identification of features such as echogenicity, texture and surface in such plaques. In this article, a review of the most important methodologies that have been developed to identify the main components of atherosclerotic plaques in images is presented. Hence, computational algorithms that take into consideration the analysis of the plaques echogenicity, image processing techniques, clustering algorithms and supervised classification used for segmentation, i.e. identification, of the atherosclerotic plaque components in ultrasound, computerized tomography and magnetic resonance images are introduced. The main contribution of this paper is to provide a categorization of the most important studies related to the segmentation of atherosclerotic plaques and its components in images acquired by the most used imaging modalities. In addition, the effectiveness and drawbacks of each methodology as well as future researches concerning the segmentation and classification of the atherosclerotic lesions are also discussed. (C) 2015 Elsevier Ltd. All rights reserved.
机译:评价图像中的动脉粥样硬化斑块的组成是确定其病理生理学的重要任务。视觉分析仍然是确定动脉粥样硬化斑块形态的最基本且最常用的方法。此外,还开发了计算机辅助方法来识别这些斑块中的特征,例如回声性,质地和表面。在本文中,将对已开发出的最重要的方法学进行综述,以鉴定图像中的动脉粥样硬化斑块的主要成分。因此,引入了考虑了斑块回声性的分析的计算算法,图像处理技术,聚类算法和用于分割,即识别超声,计算机断层扫描和磁共振图像中的动脉粥样硬化斑块成分的监督分类。本文的主要贡献是提供与最常用的成像方式所获取的图像中的动脉粥样硬化斑块及其成分分割相关的最重要研究的分类。此外,还讨论了每种方法的有效性和不足之处,以及有关动脉粥样硬化病变的分割和分类的未来研究。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号