首页> 外文期刊>Expert Systems with Application >Classifier ensemble generation and selection with multiple feature representations for classification applications in computer-aided detection and diagnosis on mammography
【24h】

Classifier ensemble generation and selection with multiple feature representations for classification applications in computer-aided detection and diagnosis on mammography

机译:具有多种特征表示的分类器集合生成和选择,用于在乳腺X线计算机辅助检测和诊断中的分类应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel ensemble classifier framework for improved classification of mammographic lesions in Computer-aided Detection (CADe) and Diagnosis (CADx) systems. Compared to previously developed classification techniques in mammography, the main novelty of proposed method is twofold: (1) the "combined use" of different feature representations (of the same instance) and data resampling to generate more diverse and accurate base classifiers as ensemble members and (2) the incorporation of a novel "ensemble selection" mechanism to further maximize the overall classification performance. In addition, as opposed to conventional ensemble learning, our proposed ensemble framework has the advantage of working well with both weak and strong classifiers, extensively used in mammography CADe and/or CADx systems. Extensive experiments have been performed using benchmark mammogram dataset to test the proposed method on two classification applications: (1) false-positive (FP) reduction using classification between masses and normal tissues, and (2) diagnosis using classification between malignant and benign masses. Results showed promising results that the proposed method (area under the ROC curve (AUC) of 0.932 and 0.878, each obtained for the aforementioned two classification applications, respectively) impressively outperforms (by an order of magnitude) the most commonly used single neural network (AUC = 0.819 and AUC = 0.754) and support vector machine (AUC = 0.849 and AUC = 0.773) based classification approaches. In addition, the feasibility of our method has been successfully demonstrated by comparing other state-of-the-art ensemble classification techniques such as Gentle AdaBoost and Random Forest learning algorithms. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新颖的集成分类器框架,用于在计算机辅助检测(CADe)和诊断(CADx)系统中改进乳腺X线病变的分类。与先前开发的乳腺X射线摄影分类技术相比,该方法的主要新颖之处是双重的:(1)不同特征表示(相同实例)的“组合使用”和数据重采样以生成更多样化和准确的基础分类器作为整体成员(2)合并了新颖的“集成选择”机制,以进一步最大化整体分类性能。另外,与传统的集成学习相反,我们提出的集成框架的优势在于可以与弱分类器和强分类器一起很好地工作,该分类器广泛用于乳腺摄影CADe和/或CADx系统。已经使用基准乳房X线照片数据集进行了广泛的实验,以在两种分类应用上测试所提出的方法:(1)使用肿块和正常组织之间的分类来减少假阳性(FP),以及(2)使用恶性肿块和良性肿块之间的分类进行诊断。结果表明,该方法(在上述两种分类应用中分别获得的ROC曲线面积(AUC)为0.932和0.878)令人印象深刻地胜过(数量级)最常用的单个神经网络( AUC = 0.819和AUC = 0.754)以及基于支持向量机(AUC = 0.849和AUC = 0.773)的分类方法。此外,通过比较其他最新的集成分类技术(如Gentle AdaBoost和Random Forest学习算法)已成功证明了我们方法的可行性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号