首页> 外文期刊>Expert Systems with Application >Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data
【24h】

Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data

机译:元启发式方法用于使用药物反应微阵列数据进行分类的增强型mRMR过滤器方法

获取原文
获取原文并翻译 | 示例

摘要

Quality data mining analysis based on microarray gene expression data is a good approach for disease classification and other fields, such as pharmacology, as well as a useful tool for medical innovation. One of the challenges in classification is that microarrays involve high dimensionality and a large number of redundant and irrelevant features. Feature selection is the most popular method for determining the optimal number of features that will be used for classification. Feature selection is important to accelerate learning, which is represented only by the optimal feature subset. The current approach for microarray feature selection for the filter method is to simply select the top-ranked genes, i.e., keeping the 50 or 100 best-ranked genes. However, the current approach is determined by human intuition; it requires trial and error, and thus, is time-consuming. Accordingly, this study aims to propose a metaheuristic approach for selecting the top n relevant genes in drug microarray data to enhance the minimum redundancy maximum relevance (mRMR) filter method. Three metaheuristIcs are applied, namely, particle swarm optimization (PS0), cuckoo search (CS), and artificial bee colony (ABC). Subsequently, k-nearest neighbor and support vector machine are used as classifiers to evaluate classification performance. The experiment used a microarray gene dataset of liver xenobiotic and pharmacological responses. Experimental results show that meta-heuristic is more efficient approaches that have reduced the complexity of the classifier. Furthermore, the results show that mRMR-CS exhibits the best performance compared with mRMR-PSO and mRMR-ABC. (C) 2017 Elsevier Ltd. All rights reserved.
机译:基于微阵列基因表达数据的高质量数据挖掘分析是疾病分类和其他领域(例如药理学)的一种很好的方法,同时也是医学创新的有用工具。分类中的挑战之一是微阵列涉及高维数以及大量冗余和不相关的特征。特征选择是用于确定将用于分类的最佳特征数的最流行方法。特征选择对于加速学习很重要,这仅由最佳特征子集表示。用于筛选方法的微阵列特征选择的当前方法是简单地选择排名靠前的基因,即保持50或100个排名靠前的基因。但是,当前的方法是由人类的直觉决定的。它需要反复试验,因此非常耗时。因此,本研究旨在提出一种元启发式方法,以选择药物微阵列数据中的前n个相关基因,以增强最小冗余最大相关性(mRMR)筛选方法。应用了三种启发式方法,即粒子群优化(PS0),布谷鸟搜索(CS)和人工蜂群(ABC)。随后,将k最近邻和支持向量机用作分类器,以评估分类性能。该实验使用了肝外源性和药理反应的微阵列基因数据集。实验结果表明,元启发式算法是更有效的方法,可降低分类器的复杂性。此外,结果表明,与mRMR-PSO和mRMR-ABC相比,mRMR-CS表现出最佳性能。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号