首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Hybrid Framework Using Multiple-Filters and an Embedded Approach for an Efficient Selection and Classification of Microarray Data
【24h】

Hybrid Framework Using Multiple-Filters and an Embedded Approach for an Efficient Selection and Classification of Microarray Data

机译:使用多个过滤器和嵌入式方法的混合框架,用于有效选择和分类微阵列数据

获取原文
获取原文并翻译 | 示例

摘要

A hybrid framework composed of two stages for gene selection and classification of DNA microarray data is proposed. At the first stage, five traditional statistical methods are combined for preliminary gene selection (Multiple Fusion Filter). Then, different relevant gene subsets are selected by using an embedded Genetic Algorithm (GA), Tabu Search (TS), and Support Vector Machine (SVM). A gene subset, consisting of the most relevant genes, is obtained from this process, by analyzing the frequency of each gene in the different gene subsets. Finally, the most frequent genes are evaluated by the embedded approach to obtain a final relevant small gene subset with high performance. The proposed method is tested in four DNA microarray datasets. From simulation study, it is observed that the proposed approach works better than other methods reported in the literature.
机译:提出了一个由两个阶段组成的混合框架,用于基因选择和DNA微阵列数据的分类。在第一阶段,将五种传统的统计方法结合在一起进行初步的基因选择(多重融合过滤器)。然后,通过使用嵌入式遗传算法(GA),禁忌搜索(TS)和支持向量机(SVM)选择不同的相关基因子集。通过分析不同基因子集中每个基因的频率,可以从此过程中获得由最相关的基因组成的基因子集。最后,通过嵌入式方法评估最常见的基因以获得具有高性能的最终相关的小基因子集。所提出的方法在四个DNA芯片数据集中进行了测试。从仿真研究可以看出,该方法比文献中报道的其他方法效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号