首页> 外文期刊>Expert Systems with Application >Autoencoders and recommender systems: COFILS approach
【24h】

Autoencoders and recommender systems: COFILS approach

机译:自动编码器和推荐系统:COFILS方法

获取原文
获取原文并翻译 | 示例

摘要

Collaborative Filtering to Supervised Learning (COFILS) transforms a Collaborative Filtering (CF) problem into classical Supervised Learning (SL) problem. Applying COFILS reduces data sparsity and makes it possible to test a variety of SL algorithms rather than matrix decomposition methods. Its main steps are: extraction, mapping and prediction. Firstly, a Singular Value Decomposition (SVD) generates a set of latent variables from a ratings matrix. Next, on the mapping phase, a new data set is generated where each sample contains a set of latent variables from a user and each rated item; and a target that corresponds the user rating for that item. Finally, on the last phase, a SL algorithm is applied. One problem of COFILS is its dependency on SVD, that is not able to extract non-linear features from data and it is not robust to noisy data. To address this problem, we propose switching SVD to a Stacked Denoising Auto-encoder (SDA) on the first phase of COFILS. With SDA, more useful and complex representations can be learned in a neural network with a local denoising criterion. We test our novel technique, namely Auto-encoder COFILS (A-COFILS), on MovieLens, R3 Yahoo! Music and Movie Tweetings data sets and compare to COFILS, as a baseline, and state of the art CF techniques. Our results indicate that A- COFILS outperforms COFILS for all the data sets and with an improvement up to 5.9%. Also, A-COFILS achieves the best result for the MovieLens 100k data set and ranks on the top three algorithms for these data sets. Thus, we show that our technique represents an advance on COFILS methodology, improving its results and making it a suitable method for CF problem. (C) 2017 Elsevier Ltd. All rights reserved.
机译:协作式过滤到监督学习(COFILS)将协作式过滤(CF)问题转换为经典的监督学习(SL)问题。应用COFILS可以减少数据稀疏性,并可以测试各种SL算法而不是矩阵分解方法。它的主要步骤是:提取,映射和预测。首先,奇异值分解(SVD)从评级矩阵生成一组潜在变量。接下来,在映射阶段,将生成一个新的数据集,其中每个样本都包含一组来自用户和每个评分项目的潜在变量;以及与该项目的用户评分相对应的目标。最后,在最后阶段,应用SL算法。 COFILS的一个问题是它对SVD的依赖,它不能从数据中提取非线性特征,并且对嘈杂的数据不可靠。为了解决此问题,我们建议在COFILS的第一阶段将SVD切换为堆叠式降噪自动编码器(SDA)。使用SDA,可以在具有局部降噪标准的神经网络中学习更有用和更复杂的表示形式。我们在MovieLens,R3 Yahoo!上测试了我们的新技术,即自动编码器COFILS(A-COFILS)。音乐和电影推文数据集,并与COFILS比较(作为基线)和最新的CF技术。我们的结果表明,对于所有数据集,A-COFILS均优于COFILS,并且改进幅度高达5.9%。同样,A-COFILS对于MovieLens 100k数据集也能达到最佳结果,并且在这些数据集的算法上排名前三。因此,我们表明我们的技术代表了COFILS方法的一项进步,改进了其结果,使其成为解决CF问题的合适方法。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号