首页> 外文期刊>Expert Systems with Application >Heart sound classification based on scaled spectrogram and tensor decomposition
【24h】

Heart sound classification based on scaled spectrogram and tensor decomposition

机译:基于缩放频谱图和张量分解的心音分类

获取原文
获取原文并翻译 | 示例

摘要

Heart sound signal analysis is an effective and convenient method for the preliminary diagnosis of heart disease. However, automatic heart sound classification is still a challenging problem which mainly reflected in heart sound segmentation and feature extraction from the corresponding segmentation results. In order to extract more discriminative features for heart sound classification, a scaled spectrogram and tensor decomposition based method was proposed in this study. In the proposed method, the spectrograms of the detected heart cycles are first scaled to a fixed size. Then a dimension reduction process of the scaled spectrograms is performed to extract the most discriminative features. During the dimension reduction process, the intrinsic structure of the scaled spectrograms, which contains important physiological and pathological information of the heart sound signals, is extracted using tensor decomposition method. As a result, the extracted features are more discriminative. Finally, the classification task is completed by support vector machine (SVM). Moreover, the proposed method is evaluated on three public datasets offered by the PASCAL classifying heart sounds challenge and 2016 PhysioNet challenge. The results show that the proposed method is competitive. (C) 2017 Elsevier Ltd. All rights reserved.
机译:心音信号分析是一种对心脏病进行初步诊断的有效便捷的方法。然而,自动心音分类仍然是一个具有挑战性的问题,主要体现在心音分割和从相应分割结果中提取特征。为了提取用于心音分类的更多判别特征,本研究提出了一种基于缩放频谱图和张量分解的方法。在提出的方法中,首先将检测到的心脏周期的频谱图缩放到固定大小。然后,执行缩放后的频谱图的降维过程,以提取最有区别的特征。在降维过程中,使用张量分解方法提取了缩放后的频谱图的内在结构,其中包含心音信号的重要生理和病理信息。结果,所提取的特征更具区分性。最后,分类任务由支持向量机(SVM)完成。此外,该方法在PASCAL对心音挑战和2016 PhysioNet挑战进行分类的三个公共数据集上进行了评估。结果表明,该方法具有竞争力。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号