首页> 外文期刊>Biomedical signal processing and control >Heart sound classification based on scaled spectrogram and partial least squares regression
【24h】

Heart sound classification based on scaled spectrogram and partial least squares regression

机译:基于缩放频谱图和偏最小二乘回归的心音分类

获取原文
获取原文并翻译 | 示例

摘要

Phonocardiogram (PCG) signal analysis is an effective and convenient method for the preliminary diagnosis of heart disease. In this study, a scaled spectrogram and partial least squares regression (PLSR) based method was proposed for the classification of PCG signals. Proposed method is mainly comprised of four stages, namely as being heart cycle estimation, spectrogram scaling, dimension reduction and classification. At the heart cycle estimation stage, the short time average magnitude difference of the Shannon energy envelope is applied. Then the spectrogram of the obtained heart cycle is calculated for feature extraction. However, the sizes of the spectrograms between different PCG signals are usually not the same. In order to overcome the difficulty of direct comparison, the bilinear interpolation is used for the spectrogram to get the scaled spectrogram with a fixed size. Nevertheless, the scaled spectrogram contains a large quantity of redundant and irrelevant information. To extract the most relevant features from the scaled spectrogram, we adopt the PLSR to reduce the dimension of the scaled spectrograms. Since PLSR has the advantage of using the category information during the dimension reduction process, the extracted features are more discriminative. Then the classification results are obtained via support vector machine (SVM). The proposed method is evaluated on two public datasets offered by the PASCAL classifying heart sounds challenge, and the results are compared to those obtained using the best methods in the challenge, thereby proving the effectiveness of our method. (C) 2016 Elsevier Ltd. All rights reserved.
机译:心音图(PCG)信号分析是一种用于心脏病的初步诊断的有效且便捷的方法。在这项研究中,提出了一种基于缩放频谱图和偏最小二乘回归(PLSR)的方法来对PCG信号进行分类。提出的方法主要包括心动周期估计,频谱图缩放,降维和分类四个阶段。在心动周期估计阶段,应用香农能量包络线的短时平均幅度差。然后,计算获得的心动周期的频谱图以进行特征提取。但是,不同PCG信号之间的频谱图大小通常不相同。为了克服直接比较的困难,将双线性插值用于频谱图,以获得具有固定大小的缩放频谱图。但是,缩放后的频谱图包含大量的冗余和不相关信息。为了从缩放后的频谱图中提取最相关的特征,我们采用PLSR来缩小缩放后的频谱图的维数。由于PLSR具有在降维过程中使用类别信息的优点,因此提取的特征更具区分性。然后通过支持向量机(SVM)获得分类结果。该方法在PASCAL对心音挑战分类的两个公开数据集上进行了评估,并将结果与​​使用挑战中最佳方法获得的结果进行了比较,从而证明了我们方法的有效性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号