首页> 外文期刊>Expert Systems with Application >Prediction of industrial equipment Remaining Useful Life by fuzzy similarity and belief function theory
【24h】

Prediction of industrial equipment Remaining Useful Life by fuzzy similarity and belief function theory

机译:基于模糊相似度和置信函数理论的工业设备剩余使用寿命预测

获取原文
获取原文并翻译 | 示例

摘要

We develop a novel prognostic method for estimating the Remaining Useful Life (RUL) of industrial equipment and its uncertainty. The novelty of the work is the combined use of a fuzzy similarity method for the RUL prediction and of Belief Function Theory for uncertainty treatment. This latter allows estimating the uncertainty affecting the RUL predictions even in cases characterized by few available data, in which traditional uncertainty estimation methods tend to fail. From the practical point of view, the maintenance planner can define the maximum acceptable failure probability for the equipment of interest and is informed by the proposed prognostic method of the time at which this probability is exceeded, allowing the adoption of a predictive maintenance approach which takes into account RUL uncertainty. The method is applied to simulated data of creep growth in ferritic steel and to real data of filter clogging taken from a Boiling Water Reactor (BWR) condenser. The obtained results show the effectiveness of the proposed method for uncertainty treatment and its superiority to the Kernel Density Estimation (KDE) and the Mean-Variance Estimation (MVE) methods in terms of reliability and precision of the RUL prediction intervals. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们开发了一种新的预测方法,用于估计工业设备的剩余使用寿命(RUL)及其不确定性。这项工作的新颖之处在于将模糊相似性方法用于RUL预测,并将信念函数理论用于不确定性处理。后者允许估计影响RUL预测的不确定性,即使在可用数据很少的情况下,传统的不确定性估计方法往往会失败。从实践的角度来看,维护计划人员可以为目标设备定义最大可接受的故障概率,并通过所建议的预后方法告知超出该概率的时间,从而可以采用预测性维护方法考虑到RUL的不确定性。该方法适用于铁素体钢蠕变生长的模拟数据以及取自沸水反应堆(BWR)冷凝器的过滤器堵塞的真实数据。获得的结果表明,所提出的不确定性处理方法的有效性及其在RUL预测区间的可靠性和精度方面优于核密度估计(KDE)和均方差估计(MVE)方法。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号