首页> 外文期刊>Expert Systems with Application >A Biological Immune System (BIS) inspired Mobile Agent Platform (MAP) security architecture
【24h】

A Biological Immune System (BIS) inspired Mobile Agent Platform (MAP) security architecture

机译:受生物免疫系统(BIS)启发的移动代理平台(MAP)安全体系结构

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of malicious entities in the distributed environment poses various serious threats to the protection of Mobile Agent Platform (MAP). Numerous researches have been proposed to ward off the inherent security risks, though these solutions are not enough to identify and remove all the vulnerabilities. In this paper, a self-adaptive IV-Phase MAP Security Architecture is proposed, which is inspired by the Biological Immune System, with the prime objective of detecting unknown malicious mobile agents. In this context, data mining methods are studied for the detection of unknown malicious executable. In particular, Boyer Moore pattern matching algorithm and N-gram feature analysis of mobile agent using a k-Nearest Neighbor Classifier, facilitate the discovery of known and unknown malicious content from incoming mobile agent in the proposed architecture, and protects against the Man In The Middle (MITM) attack, the Masquerading Attack, the Replay attack, the Repudiation attack and the Unauthorized Access Attack. The architecture is designed and implemented in IBM Aglets. A comprehensive 5-fold cross validation scheme on a large collection of malicious and non-malicious files is performed while performing Classification technique involving Feature Selection Method. The propitious experimental outcomes express that the performance (time and security) and accuracy of proposed architecture outperform the earlier known related schemes and makes the proposed architecture suitable for MAP protection in the Mobile Agent Environment (MAE). Above all, these findings exhibit wide-ranging newness, since the concept of machine learning has never been employed so far in the sphere of Mobile Agents System (MAS). Hence the proposed work is likely to be of great interest to the researchers who particularly deal with MAS security. (C) 2016 Elsevier Ltd. All rights reserved.
机译:分布式环境中恶意实体的扩散对移动代理平台(MAP)的保护构成了各种严重威胁。尽管这些解决方案不足以识别和消除所有漏洞,但已经提出了许多研究来抵御固有的安全风险。本文提出了一种自适应的IV相MAP安全体系结构,该体系结构受生物免疫系统的启发,其主要目的是检测未知的恶意移动代理。在这种情况下,研究了数据挖掘方法以检测未知的恶意可执行文件。特别是,使用k最近邻分类器进行的Boyer Moore模式匹配算法和移动代理的N-gram特征分析,有助于从所提议的体系结构中的传入移动代理中发现已知和未知的恶意内容,并防止“人入内”中(MITM)攻击,伪装攻击,重播攻击,抵赖攻击和未经授权的访问攻击。该体系结构是在IBM Aglets中设计和实现的。在执行涉及特征选择方法的分类技术时,会对大量的恶意和非恶意文件执行全面的5倍交叉验证方案。有利的实验结果表明,所提出的体系结构的性能(时间和安全性)和准确性优于先前已知的相关方案,并使所提出​​的体系结构适合于移动代理环境(MAE)中的MAP保护。最重要的是,这些发现展现出广泛的新颖性,因为到目前为止,机器学习的概念尚未在移动代理系统(MAS)领域中得到采用。因此,拟议的工作可能会引起特别关注MAS安全性的研究人员的极大兴趣。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号